3.13 Отбор кратных корней уравнения
Применение производной позволяет не только убедиться в существовании кратных корней (если они есть), но и дать способ отобрать все кратные корни, отделив их от простых корней. Имеет место следующее утверждение:
Наибольший общий делитель многочленов и имеет своими корнями лишь корни многочлена , причем только те из них, которые имеют кратность не меньше 2. Каждый их этих кратных корней многочлена является корнем наибольшего общего делителя кратности на единицу ниже. Простые корни многочлена не являются корнями наибольшего общего делителя многочленов и .
Отсюда вытекает следующее правило для нахождения кратных корней уравнения:
1. Находим .
2. Находим наибольший общий делитель многочленов и .
3. Находим корни наибольшего общего делителя многочленов и .
Каждый из найденных корней наибольшего общего делителя многочленов и является корнем многочлена , причем кратность этого корня на единицу больше его кратности в наибольшем общем делителе.
Отметим, что если наибольший общий делитель многочленов и есть константа, то уравнение =0 не имеет кратных корней.
Пример 1.
Решить уравнение
.
Решение.
Рассмотрим многочлен
производная которого равна
Найдем наибольший общий делитель многочленов и .
Имеем
Рис.1. - наибольший общий делитель многочленов
Таким образом, наибольший общий делитель многочленов и равен х-1 (с точностью до постоянного множителя).
Так как х=1 является простым корнем наибольшего общего делителя, что число х=1 будет двукратным корнем данного уравнения, и, значит, многочлен делится без остатка на Разделив на , находим, что Следовательно, корни исходного уравнения- это числа и х=6 и только они.
- Введение
- 1. Производная и ее применение для решения прикладных задач
- 1.1 Исторические сведения
- 1.2 Понятие производной, ее геометрический и физический смысл
- 13 Дифференциал
- Перечень прикладных задач:
- 3. Примеры решения прикладных задач
- 3.1 Исследование функций и построение их графиков
- 3.2 Нахождение наибольшего и наименьшего значения функции, решение прикладных задач (задач на оптимум)
- 3.3 Определение периода функции
- 3.4 Нахождение приближенных значений функции
- 3.5 Нахождение величины угла между прямыми и кривыми.
- 3.6 Разложение на множители и упрощение выражений.
- 3.7 Вычисление суммы
- 3.8 Сравнение чисел и доказательство неравенств
- 3.9 Решение неравенств
- 3.10 Доказательство тождеств
- 3.11. Решение уравнений
- 3.12 Решение систем уравнений
- 3.13 Отбор кратных корней уравнения
- 3.14 Вычисление пределов функции с помощью правила Лопиталя
- 3.15 Решение физических задач, связанных с нахождением скорости, ускорения и т.д.
- -разложение функций в ряд с помощью формулы Тейлора;
- 3.17 Разложение функций в ряд с помощью формулы Тейлора
- 3.18 Задача о линеаризации функции
- Заключение
- 23. Формирование понятия производной.
- Методы решения задач: техника вычисления производных.
- Занятие 2.Дифференциал функции. Производные и дифференциалы высших порядков. Применение производных к решению прикладных задач
- §6. Применение производной при решении
- Тема 10.3 Применение производной.
- Тема 21. Использование производной для решения прикладных задач
- Численное решение начально-краевых задач для дифференциальных уравнений в частных производных
- Тема 3. Производная и её применение
- Применение производных в экономике