logo
Производная и ее применение для решения прикладных задач

3.10 Доказательство тождеств

Пример 1.

Решение

Рассмотрим функцию

.

При х=1 имеем . Пусть ; тогда

и

Поэтому следовательно, функция при является тождественно равной постоянной. Чтобы найти эту постоянную, вычислим, например, ; имеем:

.

Таким образом, данное тождество доказано для всех .

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4