logo
Производная и ее применение для решения прикладных задач

3.2 Нахождение наибольшего и наименьшего значения функции, решение прикладных задач (задач на оптимум)

Пример 1

Из бревна, имеющего радиус R, сделать балку наибольшей прочности.

Решение:

Составляем функцию, выражающую необходимое условие.

В данной задаче высота балки (представляющей собой прямоугольник, вписанный в окружность радиуса R и ширины х), равна . Поэтому прочность такой балки равна . При этом х изменяется от 0 до 2R.

Функция обращается в нуль при х=0 и х=2R и положительна между этими значениями. Значит она имеет максимум, лежащий между 0 и 2R. Но производная этой функции обращается в нуль на отрезке лишь при . Это и есть оптимальное значение ширины b балки. Высота h балки такой ширины равна и отношение равно . Именно такое отношение высоты вытесываемой балки к ее ширине предписывается правилами производства строительных работ.

Пример 2

Требуется построить открытый цилиндрический резервуар вместимостью . Материал имеет толщину d. Какими должны быть размеры резервуара (радиус основания и высота), чтобы расход материала был наименьшим?

Решение.

Радиус основания внутреннего цилиндра обозначим через х, высоту внутреннего цилиндра через h. Объем дна и стенки резервуара

С другой стороны, по условию , откуда

Подставляя в (*), находим

Полученную функцию нужно исследовать на экстремум при х>0:

Единственный положительный корень производной - это точка Она и дает решение задачи. При этом

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4