14Системы линейных уравнений. Метод Гаусса решения систем линейных уравнений
Системой m линейных уравнений с n неизвестными называется система вида
где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn – неизвестные. В обозначении коэффициентов aij первый индекс iобозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.
Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовёмматрицей системы.
Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.
Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.
Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:
Система может иметь единственное решение.
Система может иметь бесконечное множество решений. Например, . Решением этой системы является любая пара чисел, отличающихся знаком.
И третий случай, когда система вообще не имеет решения. Например, , если бы решение существовало, тоx1 + x2 равнялось бы одновременно нулю и единице.
Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.
Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.
Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:
.
Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x1. Для этого второе уравнение разделим на а21 и умножим на –а11, а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а31 и умножим на –а11, а затем сложим с первым. В результате исходная система примет вид:
Теперь из последнего уравнения исключим слагаемое, содержащее x2. Для этого третье уравнение разделим на , умножим наи сложим со вторым. Тогда будем иметь систему уравнений:
Отсюда из последнего уравнения легко найти x3, затем из 2-го уравнения x2 и, наконец, из 1-го – x1.
При использовании метода Гаусса уравнения при необходимости можно менять местами.
Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:
и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.
К элементарным преобразованиям матрицы относятся следующие преобразования:
перестановка строк или столбцов;
умножение строки на число, отличное от нуля;
прибавление к одной строке другие строки.
Примеры: Решить системы уравнений методом Гаусса.
Вернувшись к системе уравнений, будем иметь
Выпишем расширенную матрицу системы и сведем ее к треугольному виду.
Вернувшись к системе уравнений, несложно заметить, что третье уравнения системы будет ложным, а значит, система решений не имеет.
Разделим вторую строку матрицы на 2 и поменяем местами первый и третий столбики. Тогда первый столбец будет соответствовать коэффициентам при неизвестной z, а третий – при x.
Вернемся к системе уравнений.
Из третьего уравнения выразим одну неизвестную через другую и подставим в первое.
Таким образом, система имеет бесконечное множество решений.
- I. Векторная алгебра и аналитическая геометрия.
- 1. Декартовы координаты на плоскости. Операции над векторами.
- 2. Два определения скалярного произведения.
- 3. Прямая на плоскости и различные формы ее представления.
- 4. Расстояние от точки до прямой на плоскости
- 5. Взаимное расположение прямых на плоскости.
- 6. Декартовы координаты в пространстве. Задача о делении отрезка в данном отношении.
- 7. Операции над векторами в пространстве.
- 8. Векторное произведение и его свойства
- 9.Смешанное произведение и его свойства
- 11.Расстояние от точки до плоскости.
- 16. Расстояние между прямой и плоскостью, между двумя прямыми
- 17.. Системы координат (декартовы, полярные, цилиндрические, сферические).
- II. Линейная алгебра}
- 1.Матрица,примеры и операции над матрицей.
- 2. Алгебра матриц (сложение, умножение на число, умножение матриц, линейная комбинация, транспонирование)
- 3. Подстановки, транспозиции и их свойства.
- 4 Определитель матрицы. Примеры применения.
- 5.Свойства определителя
- 6.Свойства определителей
- 1)Обратная матрица
- 2)Теорема об определителе произведения матриц
- 9. Методы обращения матрицы.
- 10. Ранг матрицы и его свойства.
- 11. Системы линейных уравнений. Теорема Кронеккера-Капелли.
- 12. Линейная зависимость векторов. Базис n - мерного пространства
- 13. Системы линейных уравнений. Метод Крамера решения систем линейных уравнений.
- 14Системы линейных уравнений. Метод Гаусса решения систем линейных уравнений
- 15. Собственные векторы и собственные значения матрицы.
- 16.Ортонормированные системы векторов и их свойства
- 17 Линейные операторы. Матрица линейного оператора.
- 18. Матрица линейного преобразования координат.
- 20. Классификация кривых второго порядка.
- 21. Классификация поверхностей второго порядка.
- III. Дифференциальное исчисление
- 2.Последовательности.
- 3.Предел последовательности. Теорема Больцано-Вейерштрасса.
- 4. Бесконечно малые и бесконечно большие последовательности. Их свойства. Бесконечно малые и бесконечно большие последовательности и их свойства.
- 5. Свойства пределов последовательности, связанные с арифметическими операциями.
- 6.Предел функции. Свойства предела функции в точке
- 7Основные теоремы о пределах. Арифметические операции над пределами.
- 8.Первый замечательный предел
- 9.Второй замечательный предел
- 10. Бесконечно малые функции. Свойства бесконечно малых.
- 11. Непрерывность функции в точке. Свойства функций, непрерывных в точке.
- Комментарии
- Точки разрыва
- Устранимые точки разрыва
- [Править] Точки разрыва первого и второго рода
- Свойства Локальные
- [Править] Глобальные
- 12. Асимптоты вертикальные и горизонтальные.
- 13. Комплексные числа и действия над ними. Тригонометрическая форма комплексного числа.
- 14.Предел последовательности комплексных чисел.
- 15.Непрерывность сложных и обратных функций
- 17.Непрерывность функции на отрезке
- 18. Производная функции в точке, ее геометрический смысл. Сделай пожалуста и этот вопрос.
- 19.Свойства производной функции.
- 23. Производные высших порядков
- 24.Теорема Ролля.
- Доказательство
- Следствия
- 1. Теорема Ролля
- 27. Формула Тейлора.
- 28. Применение производной для исследования монотонности функции.
- 29. Минимумы и максимумы функции. Необходимые условия экстремума.
- 30. Достаточные условия экстремума.
- 31. Асимптоты вертикальные и наклонные
- 32. Выпуклость. Точки перегиба
- 33. Общая схема исследования функции.