logo
Matan-otvety_1

9.Второй замечательный предел

или 

Доказательство второго замечательного предела:

Доказательство для натуральных значений

 Докажем вначале теорему для случая последовательности 

По формуле бинома Ньютона:

 

Полагая , получим:

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность — возрастающая, при этом

(2).

Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:

.

Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:

.

Поэтому (3).

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3):.

Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквойe. Т.е.

  Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами:, где— это целая часть x.

Отсюда следует: , поэтому

.

Если , то. Поэтому, согласно пределу, имеем:

.

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку, тогда

.

Из двух этих случаев вытекает, что для вещественного x.

Следствия

  1. для ,

Доказательства следствий