4.7.1. Исследование модели map-потока
Основное уравнение для MAP-потока имеет вид
. (12)
Для нахождения его частного решения определим начальное условие в виде
H(u, 0) = R , (13)
где R – вектор стационарного распределения вероятностей значений цепи Маркова k(t), управляющей MAP-потоком.
Стационарное распределение R является решением системы уравнений
RQ = 0, RE = 1,
где E – единичный вектор-столбец.
Решение уравнения (12) методом преобразования Фурье по переменной t
Применяя преобразование Фурье по переменной t, найдём решение задачи (12-13), которое однозначно определяет распределение вероятностей
P(m, t) = P(m(t) = m)
числа событий, наступивших в MAP-потоке за время t.
Докажем следующее утверждение.
Теорема 1. Распределение вероятностей
P(m, t) = P(m(t) = m)
числа событий, наступивших в MAP-потоке за время t, определяется следующим равенством
. (14)
Доказательство.
Преобразование Фурье вектор функции H(u, t) по переменной t обозначим
, (15)
тогда
.
Выполнив преобразование Фурье по t левой и правой частей уравнения (12), получим равенство
,
из которого следует, что
. (16)
В силу определения
,
поэтому
, (17)
где
P(m, t) = P(m(t) = m).
Из (15) и (17) получим
(18)
Из (16) можно записать
.
Из этого равенства и равенства (18) следует, что для любых значений выполняются равенства
,
определяющие преобразования Фурье по t от функций P(m, t), поэтому, выполнив обратное преобразование Фурье по переменной α, получим для распределения вероятностей P(m, t) явные выражения в квадратурах
,
совпадающее с равенством (14).
Теорема доказана.
- Полумарковские процессы и специальные потоки однородных событий
- Глава 1. Цепи Маркова с непрерывным временем
- 1.1. Определение и основные свойства цепи Маркова с непрерывным временем
- 1.2. Дифференциальные уравнения Колмогорова
- 1.2.1. Обратная система дифференциальных уравнений Колмогорова
- 1.2.2. Прямая система дифференциальных уравнений Колмогорова
- 1.3. Финальные вероятности
- 1.4. Время перехода из одного состояния в другое для цепей Маркова с непрерывным временем
- 1.5. Статистический смысл финальных (стационарных) вероятностей
- 1.6. Время пребывания цепи Маркова в j-ом состоянии
- 1.6. Процесс размножения и гибели
- 1.7. Метод Хинчина
- 1.8. Процесс чистого размножения
- 1.8. Пуассоновский процесс
- 1.9. Метод производящих функций
- Глава 2. Теория потоков событий
- 2.1. Определения и терминология
- А. Стационарность
- Интенсивность и параметр потока
- 2.2. Пуассоновский поток событий
- 2.3. Варианты пуассоновского потока событий
- 2.4. Потоки восстановления
- 2.5. Распределение величины перескока и недоскока для потоков восстановления
- 2.6. Парадокс остаточного времени
- 2.7. Основное свойство рекуррентных потоков
- Глава 3. Полумарковские процессы
- 3.1. Определение основных понятий теории полумарковских процессов
- 3.2. Методы исследования полумарковских процессов
- 3.2.1. Метод дополнительной переменно для исследования процесса марковского восстановления
- 3.2.2. Исследование полумарковского процесса методом дополнительной переменной y(t)
- 3.2.3. Метод дополнительных переменных z(t) и s(t) исследования полумарковского процесса
- Глава 4. Специальные (коррелированные) потоки событий
- 4.1. Модулированные пуассоновские потоки (mmp-потоки)
- 4.3. Bmap-потоки
- 4.4. Полумарковские потоки
- 4.5. Уравнения Колмогорова в теории потоков событий
- 4.5.1. Потоки с дискретной компонентой
- 4.5.2. Потоки с непрерывной компонентой
- 4.6. Метод характеристических функций для анализа потоков
- Для рекуррентного потока
- Для потока марковского восстановления
- Для полумарковского потока
- 4.7. Исследование моделей потоков
- 4.7.1. Исследование модели map-потока
- 4.7.2. Решение уравнения (12) методом матричной экспоненты
- 4.7.3. Исследование модели полумарковского потока
- Нахождение распределения r(z)
- 4.7.4. Решение основного уравнения для полумарковского потока
- Глава 5. Исследование специальных потоков событий методом асимптотического анализа
- 5.1. Метод асимптотического анализа map-потоков в условии растущего времени
- 5.1.1 Асимптотика первого порядка
- 5.1.2. Асимптотика второго порядка
- 5.2. Метод асимптотического анализа sm-потоков в условии растущего времени
- 5.2.1. Асимптотика первого порядка
- 5.2.2. Асимптотика второго порядка
- 5.3. Аппроксимация допредельного распределения
- 5.3.1. Аппроксимация второго порядка допредельного распределения
- 5.3.2. Гауссовская аппроксимация
- 5.4. Метод асимптотического анализа mmp-потоков в условии предельно редких изменений состояний потока
- 5.4.1. Асимптотика первого порядка
- 5.4.2. Асимптотика произвольного порядка
- Литература