V. Функции многих переменных.
Работа переменной силы
Пусть материальная точка М перемещается вдоль оси Ох под действием переменной силы F = F(x), направленной параллельно этой оси. Работа, произведенная силой при перемещении точки М из положения х = а в положение х = b (a < b), находится по формуле (см. п. 36).
Давление жидкости на вертикальную пластинку
По закону Паскаля давление жидкости на горизонтальную пластину равно весу столба этой жидкости, имеющего основанием пластинку, а высотой — глубину ее погружения от свободной поверхности жидкости, т. е. Р = gSh, где g — ускорение свободного падения, — плотность жидкости, S - площадь пластинки, h - глубина ее погружения.
По этой формуле нельзя искать давление жидкости на вертикально погруженную пластинку, так как ее разные точки лежат на разных глубинах.
Пусть в жидкость погружена вертикально пластина, ограниченная линиями х = а, х = b, у1 = f1(x) и у2=ƒ2(х); система координат выбрана так, как указано на рисунке 194. Для нахождения давления Р жидкости на эту пластину применим схему II (метод дифференциала).
1. Пусть часть искомой величины Р есть функция от х: р=р(х), т. е. р=р(х) — давление на часть пластины, соответствующее отрезку [а; х] значений переменной х, где х є [а; b] (р(а)=0,р(b) = Р).
2. Дадим аргументу х приращение Δх = dx. Функция р(х) получит приращение Δр (на рисунке — полоска-слой толщины dx). Найдем дифференциал dp этой функции. Ввиду малости dx будем приближенно считать полоску прямоугольником, все точки которого находятся на одной глубине х, т. е. пластинка эта — горизонтальная.
Тогда по закону Паскаля
3. Интегрируя полученное равенство в пределах от х = а до х = В, получим
- I. Введение в анализ.
- Предел функции в точке и на бесконечности. Геометрическая интерпретация. Теорема о единственности предела.
- Бесконечно малые и бесконечно большие функции, их свойства
- Теорема о связи функции с её пределом в точке
- Алгебраические свойства пределов
- Первый замечательный предел
- Понятие предела последовательности. Теорема существования предела последовательности
- Сравнение функций.
- 8. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции. Таблица эквивалентности
- 9. Понятие непрерывной функции в точке. Свойства непрерывных в точке функций
- Свойства Локальные
- Глобальные
- 10.Односторонние пределы функции в точке. Точки разрыва и их классификация.
- Односторонний предел по Гейне
- 11.Основные теоремы о непрерывных на отрезке функциях
- 11. Дифференциальное исчисление функций одной перемен-
- Правила дифференцирования функций
- Производная сложной, обратной, параметрически заданной функции
- Понятие дифференциала функции и его геометрический смысл. Применение дифференциала к приближенным вычислениям
- Основные теоремы о дифференцируемых функциях (т.Ролля, Лагранжа, Коши)
- Производные и дифференциалы высших порядков
- Правило Лопиталя раскрытия неопределенностей. Раскрытие показательных неопределенностей
- Формула Тейлора с остаточным членом в форме Лагранжа и Пеано
- Разложение основных функций по формуле Тейлора
- Монотонные функции. Признаки возрастания (убывания) функции на интервале
- Понятие экстремума функции в точке. Необходимое и достаточное условия экс тремума функции в точке
- Исследование функций на экстремум с помощью высших производных
- Наибольшее и наименьшее значения функции на отрезке
- Выпуклость и вогнутость графика функции, точка перегиба. Необходимое и достаточное условия точки перегиба графика функции
- Понятие асимптоты графика функции. Нахождение вертикальных и наклонных асимптот
- Полное исследование функции и построение графика функции
- III. Неопределенный интеграл.
- Понятие первообразной и ее свойства. Теорема о множестве первообразных
- 30.Таблица неопределенных интегралов основных функций
- Интегрирование по частям и заменой переменной в неопределенном интеграле
- Интегрирование функций с квадратным трехчленом в знаменателе
- Интегрирование рациональных дробей методом разложения на простые дроби
- Рекуррентные формулы. Вычисление интеграла
- Интегрирование иррациональных функций
- Интегрирование тригонометрических функций. Универсальная подстановка. Некоторые частные случаи
- 1.4 Интегрирование тригонометрических функций.
- 37.Интегралы, содержащие квадратичную иррациональность, и их вычисление с помощью тригонометрических подстановок
- IV. Определенный интеграл.
- Понятие определенного интеграла, его геометрический смысл, свойства
- Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница
- Интегрирование по частям и заменой переменной в определенном интеграле
- Для неопределённого интеграла
- Для определённого
- Несобственные интегралы I и п рода. Определение, свойства, теоремы сравнения
- Несобственные интегралы I рода
- Геометрический смысл несобственного интеграла I рода
- Примеры
- Несобственные интегралы II рода
- Геометрический смысл несобственных интегралов II рода
- Геометрические приложения определенного интеграла:
- 43. Физические приложения определенного интеграла (работа переменной силы при прямолинейном перемещении материальной точки, давление жидкости на пластинку).
- V. Функции многих переменных.
- 44. Функции многих переменных (фмп). Область определения, предел в точке, непрерывность
- 2. Предел функции.
- Понятие частной производной фмп. Правила дифференцирования
- Дифференцирование сложной функции многих переменных. Формула для производной неявно заданной функции одной переменной
- Касательная плоскость и нормаль к поверхности
- Частный и полный дифференциалы фмп. Применение дифференциала к приближенным вычислениям
- Частные производные высших порядков. Теорема о равенстве смешанных производных
- Дифференциалы высших порядков
- Формула Тейлора для функции двух переменных
- Различные формы остаточного члена
- Экстремумы фмп. Необходимое и достаточное условия экстремума фмп в точке
- Постановка задач на экстремум. Нахождение наибольшего и наименьшего значений функции в замкнутой области