logo
матан вопросы и ответы

Выпуклость и вогнутость графика функции, точка перегиба. Необходимое и дос­таточное условия точки перегиба графика функции

График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале.

График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале.

На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c).

Примеры.

  1. Полуокружность выпукла на [–1; 1].

  2. Парабола y = x2 вогнута на интервале (-∞; +∞).

  3. График функции в одних интервалах может быть выпуклым, а в других вогнутым. Так график функции y = sin x на [0,2; π], выпуклый в интервале (0; π) и вогнутый в (π; 2π).

Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым.

Теорема. Пусть y=f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f''(x) > 0 – вогнутый.

Доказательство. Предположим для определенности, что f''(x) < 0 и докажем, что график функции будет выпуклым.

Возьмем на графике функции y = f(x) произвольную точку M0 с абсциссой x0  (a; b) и проведем через точку M0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной.

Итак, уравнение кривой имеет вид y = f(x). Обозначим ординату касательной, соответствующую абсциссе x. Тогда . Следовательно, разность ординат кривой и касательной при одном и том же значении x будет .

Разность f(x) – f(x0) преобразуем по теореме Лагранжа , где c между x и x0.

Таким образом,

.

К выражению, стоящему в квадратных скобках снова применим теорему Лагранжа: , где c1 между c0 и x0. По условию теоремы f ''(x) < 0. Определим знак произведения второго и третьего сомножителей.

  1. Предположим, что x>x0. Тогда x0<c1<c<x, следовательно, (x – x0) > 0 и (c – x0) > 0. Поэтому .

  2. Пусть x<x0, следовательно, x < c < c1 < x0 и (x – x0) < 0, (c – x0) < 0. Поэтому вновь .

Таким образом, любая точка кривой лежит ниже касательной к кривой при всех значениях x и x0  (a; b), а это значит, что кривая выпукла. Вторая часть теоремы доказывается аналогично.

Теорема 10 (достаточное условие выпуклости). Если вторая производная дважды дифференцируемой функции положительна (отрицательна) на множестве X, то функция выпукла вниз (вверх) на этом множестве.

Доказательство. Если f''(x)>0, x X, то f'(x) возрастает на множестве X и по предыдущей теореме функция выпукла вниз на множестве X. Аналогично рассматривается случай, когда f''(x)<0.

Необходимое условие выпуклости слабее: если функция выпукла вниз (вверх) на множестве X, то f''(x) 0, x X (или f''(x) 0 ) x X. Например, функция y = x4 выпукла вниз на всей числовой прямой, но y'' = 12x2 обращается в ноль при x = 0.

Определение 10 (точка перегиба). Точкой перегиба графика непрерывной функции называется точка, разделяющая интервалы, в которых функция имеет разные направления выпуклости.

Нетрудно заметить, что точки перегиба - это точки экстремума первой производной. Отсюда следуют утверждения.

Теорема 11 (необходимое условие перегиба). Вторая производная f''(x) дважды непрерывно дифференцируемой функции в точке перегиба x0 равна нулю, т.е. f''(x0) = 0.

Теорема 12 (достаточное условие перегиба). Если вторая производная дважды дифференцируемой функции при переходе через точку x0, в которой f''(x0) = 0 меняет свой знак, то x0 есть точка перегиба ее графика.

Заметим, что если в окрестности точки x1 функция выпукла вниз, то график функции находится выше касательной, а если в окрестности точки x2 функция выпукла вверх, то график функции находится ниже касательной. В точке перегиба x0 касательная разделяет график - он лежит по разные стороны касательной. (рис. 27).

Рассмотрим пример, иллюстрирующий исследование функции на выпуклость и точки перегиба.

Пример 13. Найти интервалы выпуклости и точки перегиба функции y = x4+x3-18x2+24x -12.

Решение. Находим производные

y' = 4x3+3x2-36x+24, y'' = 12x2+6x-36.

Отсюда y'' = 0 при x1 = -2, x2 = 3/2. Следовательно, y''>0 на интервалах (-,-2), (3/2,) и функция выпукла вниз; y''<0 на интервале (-2,3/2) и функция выпукла вверх на этом интервале. Так как при переходе через точки x1 = -2 и x2 = 3/2 вторая производная меняет знак, то точки (-2,-124) и (3/2,-129/16) являются точками перегиба.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4