logo
матан вопросы и ответы

Производные и дифференциалы высших порядков

Дифференциалом порядка n, где n > 1 от функции   в некоторой точке называется дифференциал в этой точке от дифференциала порядка (n — 1), то есть

  .

Дифференциал высшего порядка функции одной переменной

Для функции, зависящей от одной переменной   второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n-го порядка от функции  :

При вычислении дифференциалов высших порядков очень важно, что  есть произвольное и не зависящее от  , которое при дифференцировании по   следует рассматривать как постоянный множитель.

Дифференциал высшего порядка функции нескольких переменных

Если функция   имеет непрерывные частные производные второго порядка, то дифференциал второго порядка определяется так: .

Символически общий вид дифференциала n-го порядка от функции  выглядит следующим образом:

где , а   произвольные приращения независимых переменных . Приращения   рассматриваются как постоянные и остаются одними и теми же при переходе от одного дифференциала к следующему. Сложность выражения дифференциала возрастает с увеличением числа переменных.

Неинвариантность дифференциалов высшего порядка

При   , -й дифференциал не инвариантен (в отличие от инвариантности первого дифференциала), то есть выражение зависит, вообще говоря, от того, рассматривается ли переменная как независимая, либо как некоторая промежуточная функция другого переменного, например, .

Для доказательства неинвариантности дифференциалов высшего порядка достаточно привести пример. При n = 2 и   :

  1. при этом,    и  

С учётом зависимости , уже второй дифференциал не обладает свойством инвариантности при замене переменной. Также не инвариантны дифференциалы порядков 3 и выше.

Частные производныеназывают частными производными первого порядка. Их можно рассматривать как функции от (х;у) є D. Эти функции могут иметь частные производные, которые называются частными производными второго порядка. Они определяются и обозначаются следующим образом:

Аналогично определяются частные производные 3-го, 4-го и т. д. порядков.

Так, и т.д.

Частная производная второго или более высокого порядка, взятая по различным переменным, называется смешанной частной производной. Таковыми являются, например,

 

Пример 44.2. Найти частные производные второго порядка функции z = x4-2x2y3+y5+1.

Решение: Так както

Оказалось, что

Этот результат не случаен. Имеет место теорема, которую приведем без доказательства.

 

Теорема 44.1 (Шварц). Если частные производные высшего порядка непрерывны, то смешанные производные одного порядка, отличающиеся лишь порядком дифференцирования, равны между собой.

В настности, для z=ƒ(х; у) имеем:

  1. Yandex.RTB R-A-252273-3
    Yandex.RTB R-A-252273-4