logo
матан вопросы и ответы

44. Функции многих переменных (фмп). Область определения, предел в точке, не­прерывность

Пусть дано множество , и пусть указано правило, по которому каждой точке соответствует некоторое число . В этом случае говорят, что задана функция с областью определения и областью значений . При этом и называют независимыми переменными (аргументами), а – зависимой переменной (функцией).

 

Функцию часто записывают в виде «». Схематично функция может быть изображена так, как это показано на рис. 1.

Рис.1.

Пример. На множестве определим функцию ; тогда ее областью значений является отрезок . Эту функцию можно определить, конечно, и на всей плоскости ; в этом случае имеем и .

Графиком функции называют множество точек ; обычно графиком является некоторая поверхность (рис. 2).

При построении графика функции часто пользуются методом сечений.

Пример. Построить график функции и найти . Рис.2.

Воспользуемся методом сечений.

– в плоскости – парабола.

– в плоскости –парабола.

– в плоскости – окружность.

Искомая поверхность – параболоид вращения (рис. 3). ^ Рис.3.

Расстоянием между двумя произвольными точками и (евклидова) пространства называется число

.

Множество точек называется открытым кругом радиуса с центром в точке , – окружностью радиуса с центром в точке .

Открытый круг радиуса с центром в точке называется -окрестностью точки .

Определение. Точка называется внутренней точкой множества , если существует -окрестность точки , целиком принадлежащая множеству (т.е. ) (рис. 4).

Определение. Точка называется граничной точкой множества , если в любой ее -окрестности содержатся точки, как принадлежащие множеству , так и не принадлежащие ему (рис. 5). Рис.4.

Граничная точка множества может как принадлежать этому множеству, так и не принадлежать ему.

Определение. Множество называется откры-тым, если все его точки – внутренние.

Определение. Множество называется замк-нутым, если оно содержит все свои граничные точки. Множество всех граничных точек множества называется его границей (и часто обозначается символом ). Заметим, что множество является замкнутым и называется замыканием множества . Рис.5.

Пример. Если , то . При этом . Покажите это!

Определение. Точка называется предельной точкой множества , если в любой -окрестности точки содержатся точки множества , отличные от .

Образно говоря, точка называется предельной точкой множества , если «к точке можно подойти сколь угодно близко, идя по точкам множества и не наступая на саму точку ». Предельная точка множества может принадлежать, а может не принадлежать этому множеству.

Пример. Множество совпадает с множеством своих предельных точек. Множество имеет единственную предельную точку . Покажите это!

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4