logo
матан вопросы и ответы

2. Предел функции.

Определение. Будем говорить, что последовательность точек сходится при к точке , если при .

В этом случае точку называют пределом указанной последовательности и пишут: при .

Легко показать, что тогда и только тогда, когда одновременно , (т.е. сходимость последовательности точек пространства эквивалентна покоординатной сходимости).

Пусть и – предельная точка множества .

Определение. Число называют пределом функции при , если для такое, что , как только . В этом случае пишут

или при .

При кажущейся полной аналогии понятий предела функций одной и двух переменных существует глубокое различие между ними. В случае функции одной переменной для существования предела в точке необходимо и достаточно равенство лишь двух чисел – пределов по двум направлениям: справа и слева от предельной точки . Для функции двух переменных стремление к предельной точке на плоскости может происходить по бесконечному числу направлений (и необязательно по прямой), и потому требование существования предела у функции двух (или нескольких) переменных «жестче» по сравнению с функцией одной переменной.

  1. Yandex.RTB R-A-252273-3
    Yandex.RTB R-A-252273-4