11.Основные теоремы о непрерывных на отрезке функциях
Теорема 4.1. Сумма конечного числа непрерывных функций, определенных на некотором множестве Х, есть функция непрерывная.
Теорема 4.2. Произведение конечного числа непрерывных функций есть функция непрерывная.
С л е д с т в и е. Целый полином Р(х)=а0+а1х+... +аnхn есть функция непрерывная.
Теорема 4.3. Частное от деления двух непрерывных функций есть функция непрерывная во всех точках, в которых делитель отличен от нуля.
Теорема 4.4. Непрерывная функция от непрерывной функции есть функция непрерывная.
Теорема 4.5. Если y = f(x) непрерывна и строго монотонна на промежутке <а,b> , то существует обратная функция х = j(y), определенная на промежутке < f(a), f(b) >, причем последняя также монотонна и непрерывна в том же смысле.
В качестве упражнения теоремы 4.1. - 4.5. - доказать самостоятельно.
Пример. Рассмотреть обратные функции к данным:
а) ; б) .
Рассмотрим теперь непрерывность функции на множествах.
Определение 4.5. Пусть f определена на множестве Е Ì Rn . Функция f называется непрерывной в точке х(0) Î Е, если " e>0 $ d=d(e) : " х Î Х , удовлетворяющих условию r(х, х(0)) < d выполняется неравенство çf(x)- f(x(0)) ç < e .
Теорема 4.6. (Кантора) Функция, непрерывная на ограниченном замкнутом множестве, является равномерно непрерывной.
Т Определение 4.6. Функция у = f(х), определенная на множестве Е Ì Rn называется равномерно непрерывной на Е, если " e > 0 $ d = d(e)>0 : " x/, x// Î E удовлетворяющих условию r(x/,x//)<d будет выполнено неравенство çf(x/) - f(x//) ç< e .
Теорема 4.8. (Коши) Если f - непрерывна на [a, b] и f(b) = A, f(b) = B, то
" A < C < B $ x Î [a, b] : f(x) = C.
С л е д с т в и е. Если f - непрерывна на [a, b], а на концах отрезка принимает значения переменных знаков (является знакопеременной), то $ точка
х0 Î [a,b] : f(x0) = 0.
Yandex.RTB R-A-252273-3
- I. Введение в анализ.
- Предел функции в точке и на бесконечности. Геометрическая интерпретация. Теорема о единственности предела.
- Бесконечно малые и бесконечно большие функции, их свойства
- Теорема о связи функции с её пределом в точке
- Алгебраические свойства пределов
- Первый замечательный предел
- Понятие предела последовательности. Теорема существования предела последовательности
- Сравнение функций.
- 8. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции. Таблица эквивалентности
- 9. Понятие непрерывной функции в точке. Свойства непрерывных в точке функций
- Свойства Локальные
- Глобальные
- 10.Односторонние пределы функции в точке. Точки разрыва и их классификация.
- Односторонний предел по Гейне
- 11.Основные теоремы о непрерывных на отрезке функциях
- 11. Дифференциальное исчисление функций одной перемен-
- Правила дифференцирования функций
- Производная сложной, обратной, параметрически заданной функции
- Понятие дифференциала функции и его геометрический смысл. Применение дифференциала к приближенным вычислениям
- Основные теоремы о дифференцируемых функциях (т.Ролля, Лагранжа, Коши)
- Производные и дифференциалы высших порядков
- Правило Лопиталя раскрытия неопределенностей. Раскрытие показательных неопределенностей
- Формула Тейлора с остаточным членом в форме Лагранжа и Пеано
- Разложение основных функций по формуле Тейлора
- Монотонные функции. Признаки возрастания (убывания) функции на интервале
- Понятие экстремума функции в точке. Необходимое и достаточное условия экс тремума функции в точке
- Исследование функций на экстремум с помощью высших производных
- Наибольшее и наименьшее значения функции на отрезке
- Выпуклость и вогнутость графика функции, точка перегиба. Необходимое и достаточное условия точки перегиба графика функции
- Понятие асимптоты графика функции. Нахождение вертикальных и наклонных асимптот
- Полное исследование функции и построение графика функции
- III. Неопределенный интеграл.
- Понятие первообразной и ее свойства. Теорема о множестве первообразных
- 30.Таблица неопределенных интегралов основных функций
- Интегрирование по частям и заменой переменной в неопределенном интеграле
- Интегрирование функций с квадратным трехчленом в знаменателе
- Интегрирование рациональных дробей методом разложения на простые дроби
- Рекуррентные формулы. Вычисление интеграла
- Интегрирование иррациональных функций
- Интегрирование тригонометрических функций. Универсальная подстановка. Некоторые частные случаи
- 1.4 Интегрирование тригонометрических функций.
- 37.Интегралы, содержащие квадратичную иррациональность, и их вычисление с помощью тригонометрических подстановок
- IV. Определенный интеграл.
- Понятие определенного интеграла, его геометрический смысл, свойства
- Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница
- Интегрирование по частям и заменой переменной в определенном интеграле
- Для неопределённого интеграла
- Для определённого
- Несобственные интегралы I и п рода. Определение, свойства, теоремы сравнения
- Несобственные интегралы I рода
- Геометрический смысл несобственного интеграла I рода
- Примеры
- Несобственные интегралы II рода
- Геометрический смысл несобственных интегралов II рода
- Геометрические приложения определенного интеграла:
- 43. Физические приложения определенного интеграла (работа переменной силы при прямолинейном перемещении материальной точки, давление жидкости на пластинку).
- V. Функции многих переменных.
- 44. Функции многих переменных (фмп). Область определения, предел в точке, непрерывность
- 2. Предел функции.
- Понятие частной производной фмп. Правила дифференцирования
- Дифференцирование сложной функции многих переменных. Формула для производной неявно заданной функции одной переменной
- Касательная плоскость и нормаль к поверхности
- Частный и полный дифференциалы фмп. Применение дифференциала к приближенным вычислениям
- Частные производные высших порядков. Теорема о равенстве смешанных производных
- Дифференциалы высших порядков
- Формула Тейлора для функции двух переменных
- Различные формы остаточного члена
- Экстремумы фмп. Необходимое и достаточное условия экстремума фмп в точке
- Постановка задач на экстремум. Нахождение наибольшего и наименьшего значений функции в замкнутой области