logo
матан вопросы и ответы

V. Функции многих переменных.

Работа переменной силы

Пусть материальная точка М перемещается вдоль оси Ох под действием переменной силы F = F(x), направленной параллельно этой оси. Работа, произведенная силой при перемещении точки М из положения х = а в положение х = b (a < b), находится по формуле (см. п. 36).

Давление жидкости на вертикальную пластинку

По закону Паскаля давление жидкости на горизонтальную пластину равно весу столба этой жидкости, имеющего основанием пластинку, а высотой — глубину ее погружения от свободной поверхности жидкости, т. е. Р = gSh, где g — ускорение свободного падения,  — плотность жидкости, S - площадь пластинки, h - глубина ее погружения.

По этой формуле нельзя искать давление жидкости на вертикально погруженную пластинку, так как ее разные точки лежат на разных глубинах.

Пусть в жидкость погружена вертикально пластина, ограниченная линиями х = а, х = b, у1 = f1(x) и у22(х); система координат выбрана так, как указано на рисунке 194. Для нахождения давления Р жидкости на эту пластину применим схему II (метод дифференциала).

1. Пусть часть искомой величины Р есть функция от х: р=р(х), т. е. р=р(х) — давление на часть пластины, соответствующее отрезку [а; х] значений переменной х, где х є [а; b] (р(а)=0,р(b) = Р).

2. Дадим аргументу х приращение Δх = dx. Функция р(х) получит приращение Δр (на рисунке — полоска-слой толщины dx). Найдем дифференциал dp этой функции. Ввиду малости dx будем приближенно считать полоску прямоугольником, все точки которого находятся на одной  глубине х, т. е. пластинка эта — горизонтальная.

Тогда по закону Паскаля

3. Интегрируя полученное равенство в пределах от х = а до х = В, получим

 

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4