Монотонные функции. Признаки возрастания (убывания) функции на интервале
Монотонная функция — это функция, приращение которой не меняет знака, то есть либо всегда отрицательная, либо всегда положительная. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной. Монотонная функция — это функция, меняющаяся в одном и том же направлении.
• Функция возрастает, если большему значению аргумента соответствует большее значение функции. • Функция убывает если большему значению аргумента соответствует меньшее значение функции. Одна из основных задач исследования функции — это нахождение промежутков ее возрастания и убывания. Такое исследование легко провести с помощью производной. Сформулируем соответствующие утверждения. Достаточный признак возрастания функции. Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I. Достаточный признак убывания функции. Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I. Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х1 и x2 из интервала. Пусть x1<x2. По формуле Лагранжа существует число с∈(х1, x2), такое, что
(1)
Число с принадлежит интервалу I, так как точки х1 и x2 принадлежат I. Если f'(x)>0 для х∈I то f’(с)>0, и поэтому F(x1)<F(x2) — это следует из формулы (1), так как x2 — x1>0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f'(с)<0, и потому f(x1)>f (х2) — следует из формулы (1), так как x2—x1>0. Доказано убывание функции f на I. Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания). Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f'(t) (см. Мгновенная скорость). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t1 <t2, то f (t1)<f (t2). Это означает, что функция f возрастает на промежутке I. Замечание 1. Если функция f непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку. Замечание 2. Для решения неравенств f' (х)>0 и f' (х)<0 удобно пользоваться обобщением метода интервалов (теоремой Дарбу) : точки, в которых производная равна 0 или не существует, разбивают область определения функции f на промежутки, в каждом из которых f' сохраняет постоянный знак. (Этот факт доказывается в курсах математического анализа.) Знак можно определить, вычислив значение f' в какой-нибудь точке промежутка.
-
Yandex.RTB R-A-252273-3
Содержание
- I. Введение в анализ.
- Предел функции в точке и на бесконечности. Геометрическая интерпретация. Теорема о единственности предела.
- Бесконечно малые и бесконечно большие функции, их свойства
- Теорема о связи функции с её пределом в точке
- Алгебраические свойства пределов
- Первый замечательный предел
- Понятие предела последовательности. Теорема существования предела последовательности
- Сравнение функций.
- 8. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции. Таблица эквивалентности
- 9. Понятие непрерывной функции в точке. Свойства непрерывных в точке функций
- Свойства Локальные
- Глобальные
- 10.Односторонние пределы функции в точке. Точки разрыва и их классификация.
- Односторонний предел по Гейне
- 11.Основные теоремы о непрерывных на отрезке функциях
- 11. Дифференциальное исчисление функций одной перемен-
- Правила дифференцирования функций
- Производная сложной, обратной, параметрически заданной функции
- Понятие дифференциала функции и его геометрический смысл. Применение дифференциала к приближенным вычислениям
- Основные теоремы о дифференцируемых функциях (т.Ролля, Лагранжа, Коши)
- Производные и дифференциалы высших порядков
- Правило Лопиталя раскрытия неопределенностей. Раскрытие показательных неопределенностей
- Формула Тейлора с остаточным членом в форме Лагранжа и Пеано
- Разложение основных функций по формуле Тейлора
- Монотонные функции. Признаки возрастания (убывания) функции на интервале
- Понятие экстремума функции в точке. Необходимое и достаточное условия экс тремума функции в точке
- Исследование функций на экстремум с помощью высших производных
- Наибольшее и наименьшее значения функции на отрезке
- Выпуклость и вогнутость графика функции, точка перегиба. Необходимое и достаточное условия точки перегиба графика функции
- Понятие асимптоты графика функции. Нахождение вертикальных и наклонных асимптот
- Полное исследование функции и построение графика функции
- III. Неопределенный интеграл.
- Понятие первообразной и ее свойства. Теорема о множестве первообразных
- 30.Таблица неопределенных интегралов основных функций
- Интегрирование по частям и заменой переменной в неопределенном интеграле
- Интегрирование функций с квадратным трехчленом в знаменателе
- Интегрирование рациональных дробей методом разложения на простые дроби
- Рекуррентные формулы. Вычисление интеграла
- Интегрирование иррациональных функций
- Интегрирование тригонометрических функций. Универсальная подстановка. Некоторые частные случаи
- 1.4 Интегрирование тригонометрических функций.
- 37.Интегралы, содержащие квадратичную иррациональность, и их вычисление с помощью тригонометрических подстановок
- IV. Определенный интеграл.
- Понятие определенного интеграла, его геометрический смысл, свойства
- Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница
- Интегрирование по частям и заменой переменной в определенном интеграле
- Для неопределённого интеграла
- Для определённого
- Несобственные интегралы I и п рода. Определение, свойства, теоремы сравнения
- Несобственные интегралы I рода
- Геометрический смысл несобственного интеграла I рода
- Примеры
- Несобственные интегралы II рода
- Геометрический смысл несобственных интегралов II рода
- Геометрические приложения определенного интеграла:
- 43. Физические приложения определенного интеграла (работа переменной силы при прямолинейном перемещении материальной точки, давление жидкости на пластинку).
- V. Функции многих переменных.
- 44. Функции многих переменных (фмп). Область определения, предел в точке, непрерывность
- 2. Предел функции.
- Понятие частной производной фмп. Правила дифференцирования
- Дифференцирование сложной функции многих переменных. Формула для производной неявно заданной функции одной переменной
- Касательная плоскость и нормаль к поверхности
- Частный и полный дифференциалы фмп. Применение дифференциала к приближенным вычислениям
- Частные производные высших порядков. Теорема о равенстве смешанных производных
- Дифференциалы высших порядков
- Формула Тейлора для функции двух переменных
- Различные формы остаточного члена
- Экстремумы фмп. Необходимое и достаточное условия экстремума фмп в точке
- Постановка задач на экстремум. Нахождение наибольшего и наименьшего значений функции в замкнутой области