Понятие асимптоты графика функции. Нахождение вертикальных и наклонных асимптот
Рисунок 1. |
Асимптоты могут быть вертикальными, наклонными и горизонтальными.
Пусть кривая y = f(x) имеет одну или несколько вертикальных асимптот (рис.1).
Для нахождения вертикальных асимптот кривой y = f(x) нужно отыскать такие значения x = a, при которых y обращается в бесконечность, т.е. при которых .
Уравнение вертикальной асимптоты будет
x = a (1)
В самом деле, из рис.1 непосредственно видно, что расстояние точки M(x; y) от прямой x = a равно d = | x - a |. Когда x a, то точка M(x; y) движется по кривой y = f(x), удаляясь в бесконечность, причем ее расстояние d = | x - a | от прямой x = a стремится к нулю и, согласно определению асимптоты, прямая x = a является асимптотой кривой y = f(x)
Пример 1.
Рисунок 2. |
Согласно определению асимптоты, при неограниченном увеличении абсциссы x (т.е. при удалении точки M по кривой в бесконечность) расстояние MN кривой от асимптоты неограниченно уменьшается, т.е . Вместе с перпендикуляром MN будет неограниченно уменьшаться и LM = f(x) - y :
(2)
В самом деле, из LMN имеем
где a - угол наклона асимптоты. Так как cos = const, то
Пусть y = kx + b - уравнение асимптоты: тогда
откуда
f(x) = kx + b + (3)
где b - бесконечно малая при x +. Таким образом, если уравнение кривой можно представить в виде (3), где k и b - некоторые постоянные, а 0 при x +, то кривая имеет асимптоту y = kx + b. Аналогичное условие можно написать для асимптоты, когда x -
Пример 2.
Однако не всегда легко представить уравнение кривой в виде (3). Поэтому для нахождения наклонной асимптоты сначала определяют угловой коэффициент k, а потом отрезок b, отсекаемый асимптотой на оси Oy. Выведем формулы для вычисления k и b. Запишем условие (3) в виде
При x + слагаемое стремится к нулю, а потому
(4)
Теперь из уравнения
f(x) = kx + b +
находим b:
b = f(x) - kx -
или, так как ,
(5) Если пределы (4) и (5) существуют, то кривая имеет при x+ асимптоту
y = kx + b,
где k и b находятся по формулам (4) и (5). Для x- формулы такие же, но пределы находятся при x-. При k = 0 получаем уравнение
y = b
горизонтальной асимптоты, причем
-
Содержание
- I. Введение в анализ.
- Предел функции в точке и на бесконечности. Геометрическая интерпретация. Теорема о единственности предела.
- Бесконечно малые и бесконечно большие функции, их свойства
- Теорема о связи функции с её пределом в точке
- Алгебраические свойства пределов
- Первый замечательный предел
- Понятие предела последовательности. Теорема существования предела последовательности
- Сравнение функций.
- 8. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции. Таблица эквивалентности
- 9. Понятие непрерывной функции в точке. Свойства непрерывных в точке функций
- Свойства Локальные
- Глобальные
- 10.Односторонние пределы функции в точке. Точки разрыва и их классификация.
- Односторонний предел по Гейне
- 11.Основные теоремы о непрерывных на отрезке функциях
- 11. Дифференциальное исчисление функций одной перемен-
- Правила дифференцирования функций
- Производная сложной, обратной, параметрически заданной функции
- Понятие дифференциала функции и его геометрический смысл. Применение дифференциала к приближенным вычислениям
- Основные теоремы о дифференцируемых функциях (т.Ролля, Лагранжа, Коши)
- Производные и дифференциалы высших порядков
- Правило Лопиталя раскрытия неопределенностей. Раскрытие показательных неопределенностей
- Формула Тейлора с остаточным членом в форме Лагранжа и Пеано
- Разложение основных функций по формуле Тейлора
- Монотонные функции. Признаки возрастания (убывания) функции на интервале
- Понятие экстремума функции в точке. Необходимое и достаточное условия экс тремума функции в точке
- Исследование функций на экстремум с помощью высших производных
- Наибольшее и наименьшее значения функции на отрезке
- Выпуклость и вогнутость графика функции, точка перегиба. Необходимое и достаточное условия точки перегиба графика функции
- Понятие асимптоты графика функции. Нахождение вертикальных и наклонных асимптот
- Полное исследование функции и построение графика функции
- III. Неопределенный интеграл.
- Понятие первообразной и ее свойства. Теорема о множестве первообразных
- 30.Таблица неопределенных интегралов основных функций
- Интегрирование по частям и заменой переменной в неопределенном интеграле
- Интегрирование функций с квадратным трехчленом в знаменателе
- Интегрирование рациональных дробей методом разложения на простые дроби
- Рекуррентные формулы. Вычисление интеграла
- Интегрирование иррациональных функций
- Интегрирование тригонометрических функций. Универсальная подстановка. Некоторые частные случаи
- 1.4 Интегрирование тригонометрических функций.
- 37.Интегралы, содержащие квадратичную иррациональность, и их вычисление с помощью тригонометрических подстановок
- IV. Определенный интеграл.
- Понятие определенного интеграла, его геометрический смысл, свойства
- Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница
- Интегрирование по частям и заменой переменной в определенном интеграле
- Для неопределённого интеграла
- Для определённого
- Несобственные интегралы I и п рода. Определение, свойства, теоремы сравнения
- Несобственные интегралы I рода
- Геометрический смысл несобственного интеграла I рода
- Примеры
- Несобственные интегралы II рода
- Геометрический смысл несобственных интегралов II рода
- Геометрические приложения определенного интеграла:
- 43. Физические приложения определенного интеграла (работа переменной силы при прямолинейном перемещении материальной точки, давление жидкости на пластинку).
- V. Функции многих переменных.
- 44. Функции многих переменных (фмп). Область определения, предел в точке, непрерывность
- 2. Предел функции.
- Понятие частной производной фмп. Правила дифференцирования
- Дифференцирование сложной функции многих переменных. Формула для производной неявно заданной функции одной переменной
- Касательная плоскость и нормаль к поверхности
- Частный и полный дифференциалы фмп. Применение дифференциала к приближенным вычислениям
- Частные производные высших порядков. Теорема о равенстве смешанных производных
- Дифференциалы высших порядков
- Формула Тейлора для функции двух переменных
- Различные формы остаточного члена
- Экстремумы фмп. Необходимое и достаточное условия экстремума фмп в точке
- Постановка задач на экстремум. Нахождение наибольшего и наименьшего значений функции в замкнутой области