logo search
lou-filosofsky_trening-2007

Два вида истин

Краус и Бриди согласны относительно того, что, по сути дела, имеются два вида истин. Некоторые истины, например, та истина, что все жеребцы относятся к мужскому полу, «тривиально» истинны — истинны по соглашению. Другие истины, например, та, что все жеребцы имеют уши (если это истина), являются таковыми благодаря фактам.

Если истинно в силу соглашения, что все жеребцы относятся к мужскому полу, то нам не нужно идти и проверять всех жеребцов — относятся они к мужскому полу или нет Как обстоят дела в действительности, в данном случае не важно. Не имеет значения, какие факты существуют в мире: истина по соглашению останется истиной в любом случае. Она является «тривиальной» истиной.

С другой стороны, утверждение, истинное благодаря фактам, не является «тривиально» истинным. Такое утверждение рискует оказаться ложным, ибо мир может быть не таким, каким оно его описывает. Как говорит Краус, может случиться так, что не все жеребцы имеют уши. Для того чтобы узнать истинно ли нетривиальное утверждение, мы должны исследовать, таковы ли в действительности факты, о которых оно говорит: нужно пойти и посмотреть на всех жеребцов.

Бриди полагает, что математические утверждения истинны благодаря конвенции. Как и утверждение о том, что все жеребцы относятся к мужскому полу, они истинны благодаря нам самим. С другой стороны, Краус считает, что истинность математических утверждений определяется независимыми математическими фактами. Такова позиция математического реалиста.

Какая из этих двух точек зрения правильна?

245