logo search
lou-filosofsky_trening-2007

Почему математика должна быть чем-то «внешним»

Так, может быть, следует отбросить реализм и согласиться «конвенционализмом? Трудно сказать. Дело в том, что конвенционализм также встречает серьезные возражения. В частности, следующее рассуждение показывает, по-видимому, что конвенционализм неправ.

Краус: Хорошо, я согласен с тем, что есть что-то таинственное в том, как мы получаем математическое знание. Однако это не может заставить нас принять конвенционализм. Ясно, что конвенционализм ложен.

Бриди: Почему?

Краус: Представь себе цивилизацию, представители которой производят вычисления, руководствуясь иными математическими соглашениями. Вместо правил умножения, сложения, вычитания и т.д. они пользуются правилами шумножения, шложения, швычитания. Назовем эту альтернативную систему вычислений шматематикой. В шматематике 12, шумноженное на 12, дает 150. Это истинно «по соглашению».

Бриди: Какой кошмар!

252

Краус: Конечно. Но такая альтернативная система вычислений по крайней мере возможна, не так ли?

Бриди: Пожалуй.

Краус: Итак, ты полагаешь, что 12, умноженное на 12, дает 144 только в силу соглашения. Правильно?

Бриди: Да.

Краус: Тогда 12, шумноженное на 12, может дать 150. Это будет истинно тоже только благодаря соглашению.

Б риди: Так.

Краус: Но если представите ли этой необыкновенной цивилизации производят вычисления, руководствуясь правилами своей шматематики, то они будут совершать ошибки. Мы вычисляем согласно правилам математики, поэтому мы строим прочные мосты, посылаем людей на Луну, и нам хватает горючего, чтобы долететь до Глазго. Цивилизация, пользующаяся шматематикой, едва ли сможет просуществовать долго. Ее мосты будут разрушаться, ее электроприборы будут перегорать, а средствам передвижения постоянно будет не хватать горючего. Ты видишь теперь, что математика в отличие от шматематики действительно приводит к правильным результатам.

Бриди: Согласен.

Краус: Но тогда отсюда следует, что в отличие от шматематических истин истины математики не являются только «истинами по соглашению»-Истинные математические утверждения действительно истинны. Они в точности представляют положение дел в мире. Попробуй вместо математики пользоваться шматематикой, и ты придешь к ошибочному результату.

253

Рассуждения Крауса выглядят привлекательно. Мы часто используем математику для предсказаний. Если бы Краус воспользовался шматематикой, чтобы предсказать, сколько плиток потребуется для покрытия пола в ванной, он насчитал бы шесть лишних плиток. Математика же дает правильный результат. Представляется поэтому, что в отличие от шмате-матики математика точно отображает структуру «внешнего» мира. Но если так, то утверждение «12x12= 144» не является лишь «тривиально» истинным, следовательно, конвенционализм должен быть ложен.