Решение систем нелинейных уравнений
В отличие от систем линейных уравнений для систем нелинейных уравнение не известны прямые методы решения. Лишь в отдельных случаях систему можно решить непосредственно. Например, для системы из двух уравнений иногда удается выразить одно неизвестное через другое и таким образом свести задачу к решению одного нелинейного уравнения относительно одного неизвестного. Поэтому итерационные методы для нелинейных систем приобретаю особую актуальность.
Метод Ньютона
Рассмотрим нелинейную систему уравнений
(4.10)
или в векторной форме
f(x)=0 (4.10’)
где
, .
Для решения системы (4.10’) будем пользоваться методом последовательных приближений.
Предположим, известно k-е приближение
точный корень уравнения (4.10’) можно представить в виде
, (4.11)
где - поправка (погрешность корня).
. (4.12)
Предполагая, что функция f(x) непрерывно дифференцируема в некоторой выпуклой области, содержащей x и x(k), разложим левую часть уравнения (4.12) по степеням малого вектора , ограничиваясь линейными членами,
(4.13)
Метод Ньютона решения системы (4.10) состоит в построении итерационной последовательности:
k=0, 1, 2, … (4.15)
Если все поправки становятся достаточно малыми, счет прекращается. Иначе новые значения xi используются как приближенные значения корней, и процесс повторяется до тех пор, пока не будет найдено решение или не станет ясно, что получить его не удается.
Yandex.RTB R-A-252273-3
- Введение
- Основы работы с MathCad
- 1. Введение в численные методы. Теория погрешностей и машинная арифметика Понятие о вычислительном эксперименте
- Классификация погрешностей
- Элементы теории погрешностей
- 2. Теория погрешностей и машинная арифметика Погрешности арифметических действий Погрешность функции
- Погрешности арифметических действий
- 3. Численное решение нелинейных уравнений
- Решение нелинейных уравнений
- 4. Численное решение систем уравнений Решение систем линейных уравнений
- Решение матричных уравнений
- Решение систем нелинейных уравнений
- 5. Решение систем уравнений и систем уравнений MathCad Решение одного уравнения
- Нахождение корней полинома
- Решение систем уравнений
- Приближенные решения
- Символьное решение уравнений
- 6. Интерполяция функций
- Глобальная интерполяция
- 7. Интерполяция функций Интерполяционные формулы Ньютона
- Локальная интерполяция
- 8. Интерполяция функций Кубическая сплайн-интерполяция
- Интерполяция средствами MathCad
- 9. Математическая обработка экспериментальных данных Элементы теории ошибок
- Элементы теории ошибок Случайные ошибки
- Аппроксимация в виде линейной комбинации функций
- Полиномиальная аппроксимация в Mathcad
- С помощью функции regress
- 11. Численное интегрирование и дифференцирование Численное интегрирование
- Методы прямоугольников
- Метод трапеций
- Метод Симпсона
- Метод Монте - Карло
- Численное дифференцирование
- 12. Решение обыкновенных дифференциальных уравнений
- Одношаговые методы решения задачи Коши
- Общая характеристика одношаговых методов
- 13. Решение дифференциальных уравнений в частных производных Уравнения первого порядка
- Типы дифференциальных уравнений в частных производных
- Уравнения первого порядка
- Лабораторная работа
- Варианты задания 1
- Варианты задания 2
- Варианты задания 3
- Локальная интерполяция
- Предсказание
- Варианты заданий 4
- Полиномиальная регрессия
- Обобщенная регрессия
- Варианты задания 5
- Численное интегрирование и дифференцирование
- Варианты задания 6