logo
Численные методы

4. Численное решение систем уравнений Решение систем линейных уравнений

 

 

Способы решения систем линейных уравнений делятся на две группы:

1) точные методы, представляющие собой конечные алгоритмы для вычислений корней системы (решение систем с помощью обратной матрицы, правило Крамера, метод Гаусса и др.),

2) итерационные методы, позволяющие получить решение системы с заданной точностью путем сходящихся итерационных процессов (метод итерации, метод Зейделя и др.)

Вследствие неизбежных округлений результаты даже точных методов являются приближенными. При использовании итерационных методов, сверх того, добавляется погрешность метода.

Эффективное применение итерационных методов существенно зависит от удачного выбора начального приближения и быстроты сходимости процесса.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4