Основы работы с MathCad
Mathcad работает с документами. С точки зрения пользователя, документ – это чистый лист бумаги, на котором можно размещать области трех основных типов: математические выражения, текстовые фрагменты и графические области.
Математические выражения
К основным элементам математических выражений Mathcad относятся типы данных, операторы, функции и управляющие структуры.
Типы данных
К типам данных относятся числовые константы, обычные и системные переменные, массивы (векторы и матрицы) и данные файлового типа.
Константами называют поименованные объекты, хранящие некоторые значения, которые не могут быть изменены. Переменные являются поименованными объектами, имеющими некоторое значение, которое может изменяться по ходу выполнения программы. Имена констант, переменных и иных объектов называют идентификаторами.
Идентификаторы в Mathcad представляют собой набор латинских или греческих букв и цифр. В Mathcad содержится небольшая группа особых объектов, которые нельзя отнести ни к классу констант, ни к классу переменных, значения которых определены сразу после запуска программы. Их правильнее считать системными переменными, имеющими предопределенные системой начальные значения (см. Приложение 1).
Обычные переменные отличаются от системных тем, что они должны быть предварительно определены пользователем, т.е. им необходимо хотя бы однажды присвоить значение. В качестве оператора присваивания используется знак ( ), тогда как знак (=) отведен для вывода значения константы или переменной.
Рис. 1.1. Математические выражения
Если переменной присваивается начальное значение с помощью оператора ( ), такое присваивание называется локальным. До этого присваивания переменная не определена и её нельзя использовать. Однако с помощью знака ( ) можно обеспечить глобальное присваивание (см. Пример 1, рис. 1.1). Существует также жирный знак равенства, который используется, например, как оператор приближенного равенства при решении систем уравнений.
Операторы
Операторы - элементы Mathcad, с помощью которых можно создавать математические выражения. К ним, например, относятся символы арифметических операций, знаки вычисления сумм, произведений, производной, интеграла и т.д. После указания операндов (параметров операторов) операторы становятся исполняемыми по документу блоками, например, 2 + 5 -оператор сложения с двумя операндами. В Приложении 2 приведен список наиболее часто используемых операторов.
Функции
В пакете Mathcad имеется множество встроенных функций, т.е. функций, заблаговременно введенных разработчиками (см. Приложение 3). Главным признаком функции является возврат значения, т.е. функция в ответ на обращение к ней по имени с указанием ее аргументов должна возвратить свое значение.
Важной особенностью пакета является возможность задания внешних функций, или функций пользователя. Следует особо отметить разницу между аргументами и параметрами функции. Переменные, указанные в скобках после имени функции, являются ее аргументами и заменяются при вычислении функции значениями из скобок. Переменные в правой части определения функции, не указанные скобках в левой части, являются параметрами и должны задаваться до определения функции (см. Пример 2, рис. 1.1).
Дискретные аргументы
Дискретные аргументы – особый класс переменных, который в пакете Mathcad зачастую заменяет управляющие структуры, называемые циклами (однако полноценной такая замена не является). Эти переменные имеют ряд фиксированных значений, либо целочисленных, либо в виде чисел с определенным шагом, меняющихся от начального значения до конечного.
Дискретные аргументы значительно расширяют возможности Mathcad, позволяя выполнять многократные вычисления или циклы с повторяющимися вычислениями, формировать векторы и матрицы (Пример 3, рис. 1.1).
Массивы
Массив - имеющая уникальное имя совокупность конечного числа числовых или символьных элементов, упорядоченных некоторым образом и имеющих определенные адреса. В пакете Mathcad используются массивы двух наиболее распространенных типов: одномерные (векторы) и двумерные (матрицы).
Порядковый номер элемента, который является его адресом, называется индексом. Индексы могут иметь только целочисленные значения. Они могут начинаться с нуля или единицы, в соответствии со значением системной переменной ORIGIN (см. Приложение 1).
Векторы и матрицы можно задавать различными способами: - с помощью команды Вставка Матрица, - с использованием дискретного аргумента (Пример 3, рис. 1.1).
Текстовые фрагменты
Текстовые фрагменты представляют собой куски текста, которые пользователь хотел бы видеть в своем документе. Существуют два вида текстовых фрагментов - текстовая область (region) и текстовый диапазон (band). Текстовые области предназначены для небольших кусков текста - подписей, комментариев и т.п. Текстовые диапазоны применяются в том случае, если необходимо работать с абзацами или страницами.
Графические области
Графические области делятся на три основных типа - двумерные графики, трехмерные графики и импортированные графические образы. Двумерные и трехмерные графики строятся самим Mathсad на основании обработанных данных.
Создание анимационного клипа
Mathсad имеет встроенную переменную FRAME, чье единственное назначение - управление анимациями:
- Создайте объект, чей вид зависит oт FRAME.
- Выберите Вид Анимация для вызова диалогового окна.
- Заключите в выделяющий пунктирный прямоугольник часть рабочего документа, которую нужно анимировать.
- Установите нижние и верхние границы FRAME.
- Введите значение скорости воспроизведения (кадр/сек).
- Выберите Анимация. Сейчас анимация только создается.
- Сохраните анимацию как AVI файл (Сохранить как).
- Воспроизведите сохраненную анимацию .
Сообщения об ошибках
При выполнении вычислений возможны ошибки. Сообщение об ошибке в Mathcad выводится в красном прямоугольнике, от которого отходит линия, указывающая на место ошибки. В Приложении 4 приведен список сообщений об ошибках.
Yandex.RTB R-A-252273-3
- Введение
- Основы работы с MathCad
- 1. Введение в численные методы. Теория погрешностей и машинная арифметика Понятие о вычислительном эксперименте
- Классификация погрешностей
- Элементы теории погрешностей
- 2. Теория погрешностей и машинная арифметика Погрешности арифметических действий Погрешность функции
- Погрешности арифметических действий
- 3. Численное решение нелинейных уравнений
- Решение нелинейных уравнений
- 4. Численное решение систем уравнений Решение систем линейных уравнений
- Решение матричных уравнений
- Решение систем нелинейных уравнений
- 5. Решение систем уравнений и систем уравнений MathCad Решение одного уравнения
- Нахождение корней полинома
- Решение систем уравнений
- Приближенные решения
- Символьное решение уравнений
- 6. Интерполяция функций
- Глобальная интерполяция
- 7. Интерполяция функций Интерполяционные формулы Ньютона
- Локальная интерполяция
- 8. Интерполяция функций Кубическая сплайн-интерполяция
- Интерполяция средствами MathCad
- 9. Математическая обработка экспериментальных данных Элементы теории ошибок
- Элементы теории ошибок Случайные ошибки
- Аппроксимация в виде линейной комбинации функций
- Полиномиальная аппроксимация в Mathcad
- С помощью функции regress
- 11. Численное интегрирование и дифференцирование Численное интегрирование
- Методы прямоугольников
- Метод трапеций
- Метод Симпсона
- Метод Монте - Карло
- Численное дифференцирование
- 12. Решение обыкновенных дифференциальных уравнений
- Одношаговые методы решения задачи Коши
- Общая характеристика одношаговых методов
- 13. Решение дифференциальных уравнений в частных производных Уравнения первого порядка
- Типы дифференциальных уравнений в частных производных
- Уравнения первого порядка
- Лабораторная работа
- Варианты задания 1
- Варианты задания 2
- Варианты задания 3
- Локальная интерполяция
- Предсказание
- Варианты заданий 4
- Полиномиальная регрессия
- Обобщенная регрессия
- Варианты задания 5
- Численное интегрирование и дифференцирование
- Варианты задания 6