Локальная интерполяция
Линейная интерполяция
Простейшим и часто используемым видом локальной интерполяции является линейная интерполяция. Она состоит в том, что заданные точки (i=0, 1, …, n) соединяются прямолинейными отрезками, и функция f(x) приближается к ломаной с вершинами в данных точках.
Рис. 7.1. Линейная интерполяция
Уравнения каждого отрезка ломаной линии в общем случае разные. Поскольку имеется n интервалов (xi, xi+1), то для каждого из них в качестве уравнения интерполяционного полинома используется уравнение прямой, проходящей через две точки. В частности, для i-го интервала можно написать уравнение прямой, проходящей через точки (xi, yi), и (xi+1, yi+1), в виде:
.
Отсюда
, (7.9)
,
Следовательно, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента х, а затем подставить его в формулу (7.9) и найти приближенное значение функций в этой точке.
Квадратичная интерполяция
В случае квадратичной интерполяции интерполяционной функции на отрезке принимается квадратный трехчлен.
Уравнение квадратного трехчлена
, (7.10)
содержит три неизвестных коэффициента для определения которых необходимы три уравнения.
Ими служат условия прохождения параболы (7.10) через три точки , , . Эти условия можно записать в виде:
(7.11)
Интерполяция для любой точки проводится по трем ближайшим точкам.
Yandex.RTB R-A-252273-3
- Введение
- Основы работы с MathCad
- 1. Введение в численные методы. Теория погрешностей и машинная арифметика Понятие о вычислительном эксперименте
- Классификация погрешностей
- Элементы теории погрешностей
- 2. Теория погрешностей и машинная арифметика Погрешности арифметических действий Погрешность функции
- Погрешности арифметических действий
- 3. Численное решение нелинейных уравнений
- Решение нелинейных уравнений
- 4. Численное решение систем уравнений Решение систем линейных уравнений
- Решение матричных уравнений
- Решение систем нелинейных уравнений
- 5. Решение систем уравнений и систем уравнений MathCad Решение одного уравнения
- Нахождение корней полинома
- Решение систем уравнений
- Приближенные решения
- Символьное решение уравнений
- 6. Интерполяция функций
- Глобальная интерполяция
- 7. Интерполяция функций Интерполяционные формулы Ньютона
- Локальная интерполяция
- 8. Интерполяция функций Кубическая сплайн-интерполяция
- Интерполяция средствами MathCad
- 9. Математическая обработка экспериментальных данных Элементы теории ошибок
- Элементы теории ошибок Случайные ошибки
- Аппроксимация в виде линейной комбинации функций
- Полиномиальная аппроксимация в Mathcad
- С помощью функции regress
- 11. Численное интегрирование и дифференцирование Численное интегрирование
- Методы прямоугольников
- Метод трапеций
- Метод Симпсона
- Метод Монте - Карло
- Численное дифференцирование
- 12. Решение обыкновенных дифференциальных уравнений
- Одношаговые методы решения задачи Коши
- Общая характеристика одношаговых методов
- 13. Решение дифференциальных уравнений в частных производных Уравнения первого порядка
- Типы дифференциальных уравнений в частных производных
- Уравнения первого порядка
- Лабораторная работа
- Варианты задания 1
- Варианты задания 2
- Варианты задания 3
- Локальная интерполяция
- Предсказание
- Варианты заданий 4
- Полиномиальная регрессия
- Обобщенная регрессия
- Варианты задания 5
- Численное интегрирование и дифференцирование
- Варианты задания 6