logo
Численные методы

3. Численное решение нелинейных уравнений

 

Инженеру часто приходится решать алгебраические и трансцендентные уравнения, что может представлять собой самостоятельную задачу или являться частью более сложных задач. В обоих случаях практическая ценность метода в значительной мере определяется быстротой и эффективностью полученного решения.

Выбор подходящего метода для решения уравнений зависит от характера рассматриваемой задачи. Задачи, сводящиеся к решению алгебраических и трансцендентных уравнений, можно классифицировать по числу уравнений и в зависимости от предлагаемого характера и числа решений (рис. 3.1).

Одно уравнение будем называть линейным, алгебраическим или трансцендентным в зависимости от того, имеет ли оно одно решение, n решений или неопределенное число решений. Систему уравнений будем называть линейной или нелинейной в зависимости от математической природы входящих в нее уравнений.

Решение линейного уравнения с одним неизвестным получается достаточно просто и здесь не рассматривается.

Рис. 3.1. Классификация уравнений

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4