С помощью функции regress
Так как regress пытается приблизить все точки данных, используя один полином, это не даст хороший результат, когда данные не связаны единой полиномиальной зависимостью. Например, предположим, ожидается, что yi зависят линейно от x в диапазоне от x1 до x10 и ведут себя подобно кубическому полиному в диапазоне от x11 до x20. Если используется regress с n=3, можно получить хорошее приближение для второй половины, но плохое - для первой. Функция loess облегчает эти проблемы, выполняя локальное приближение. Вместо создания одного полинома, как это делает regress, loess создаёт различные полиномы второго порядка в зависимости от расположения на кривой.
Она делает это, исследуя данные в малой окрестности точки, представляющей интерес. Аргумент span управляет размером этой окрестности. По мере того, как диапазон становится большим, loess становится эквивалентным regress с n=2. Значение по умолчанию - span = 0,75.
Рис. 10.3 показывает, как span влияет на приближение, выполненное функцией loess .
Рис. 10.3. Влияние различных значений span на функцию loess
Yandex.RTB R-A-252273-3
- Введение
- Основы работы с MathCad
- 1. Введение в численные методы. Теория погрешностей и машинная арифметика Понятие о вычислительном эксперименте
- Классификация погрешностей
- Элементы теории погрешностей
- 2. Теория погрешностей и машинная арифметика Погрешности арифметических действий Погрешность функции
- Погрешности арифметических действий
- 3. Численное решение нелинейных уравнений
- Решение нелинейных уравнений
- 4. Численное решение систем уравнений Решение систем линейных уравнений
- Решение матричных уравнений
- Решение систем нелинейных уравнений
- 5. Решение систем уравнений и систем уравнений MathCad Решение одного уравнения
- Нахождение корней полинома
- Решение систем уравнений
- Приближенные решения
- Символьное решение уравнений
- 6. Интерполяция функций
- Глобальная интерполяция
- 7. Интерполяция функций Интерполяционные формулы Ньютона
- Локальная интерполяция
- 8. Интерполяция функций Кубическая сплайн-интерполяция
- Интерполяция средствами MathCad
- 9. Математическая обработка экспериментальных данных Элементы теории ошибок
- Элементы теории ошибок Случайные ошибки
- Аппроксимация в виде линейной комбинации функций
- Полиномиальная аппроксимация в Mathcad
- С помощью функции regress
- 11. Численное интегрирование и дифференцирование Численное интегрирование
- Методы прямоугольников
- Метод трапеций
- Метод Симпсона
- Метод Монте - Карло
- Численное дифференцирование
- 12. Решение обыкновенных дифференциальных уравнений
- Одношаговые методы решения задачи Коши
- Общая характеристика одношаговых методов
- 13. Решение дифференциальных уравнений в частных производных Уравнения первого порядка
- Типы дифференциальных уравнений в частных производных
- Уравнения первого порядка
- Лабораторная работа
- Варианты задания 1
- Варианты задания 2
- Варианты задания 3
- Локальная интерполяция
- Предсказание
- Варианты заданий 4
- Полиномиальная регрессия
- Обобщенная регрессия
- Варианты задания 5
- Численное интегрирование и дифференцирование
- Варианты задания 6