12. Решение обыкновенных дифференциальных уравнений
Инженеру постоянно приходится в своей деятельности сталкиваться с дифференциальными уравнениями. Многие задачи механики, физики, химии и других отраслей науки и техники при их математическом моделировании сводится к решению дифференциальных уравнений. Обыкновенные дифференциальные уравнения или системы таких уравнений часто используется для построения математических моделей динамических процессов, т.е. процессов перехода физических систем из одного состояния в другое, бесконечно близкое. Примерами таких процессов могут служить явления, возникающие в теплосетях, распространение радиоволн, сопротивления материалов, движение материальных точек и многое другое. Точные методы решения дифференциальных уравнений, изучаемые в курсе дифференциальных уравнений, позволяют выразить решения через элементарные или специальные формулы. Однако классы уравнений, для которых разработаны точные методы решения, довольно узки и охватывают только малую часть возникающих на практике задач. В силу этого большое значение имеют приближенные численные методы решения, ориентированные на широкий класс, встречающихся в практике дифференциальных уравнений.
Напомним предварительно некоторые определения.
Обыкновенным дифференциальными уравнениями называют такие уравнения, которые содержат одну или несколько производных от исходной формулы y=f(x). Их можно записать в виде:
(12.1)
где x- независимая переменная.
Наивысший порядок n, входящий в уравнение (12.1) называется порядком дифференциального уравнения.
Линейным дифференциальным уравнением называется уравнение, линейное относительно искомой формулы и ее производных.
Решением дифференциального уравнения (12.1) называется всякая функция , которая после ее подстановки в уравнение превращает его в тождество.
Решить дифференциальное уравнение - значит найти его общий интеграл. Под общим интегралом понимается соотношение между независимой переменной, зависимой переменной и произвольными постоянными, число которых равно порядку дифференциального уравнения. Общее решение (или общий интеграл) уравнения имеет вид:
(12.2)
Задача Коши
Задачу Коши можно сформулировать следующим образом: пусть дано дифференциальное уравнение
(12.3)
и начальное условие:
(12.4)
Требуется найти функцию y(x), удовлетворяющую как указанному уравнению, так и начальному условию.
Поскольку численное решение задачи Коши применяется в различных областях науки и техники, то оно в течение многих лет было объектом пристального внимания и число разработанных для него методов очень велико.
Остановимся здесь на двух группах методов решения задачи Коши:
1.Одношаговые методы, в которых для нахождения следующей точки на кривой y=f(x) требуется информация лишь об одном предыдущем шаге: метод Эйлера, методы Рунге - Кутта.
2.Методы прогноза и коррекции (многошаговые), в которых для отыскивания следующей точки кривой y=f(x) требуется информация более чем об одной из предыдущих точек: метод Адамса
Yandex.RTB R-A-252273-3
- Введение
- Основы работы с MathCad
- 1. Введение в численные методы. Теория погрешностей и машинная арифметика Понятие о вычислительном эксперименте
- Классификация погрешностей
- Элементы теории погрешностей
- 2. Теория погрешностей и машинная арифметика Погрешности арифметических действий Погрешность функции
- Погрешности арифметических действий
- 3. Численное решение нелинейных уравнений
- Решение нелинейных уравнений
- 4. Численное решение систем уравнений Решение систем линейных уравнений
- Решение матричных уравнений
- Решение систем нелинейных уравнений
- 5. Решение систем уравнений и систем уравнений MathCad Решение одного уравнения
- Нахождение корней полинома
- Решение систем уравнений
- Приближенные решения
- Символьное решение уравнений
- 6. Интерполяция функций
- Глобальная интерполяция
- 7. Интерполяция функций Интерполяционные формулы Ньютона
- Локальная интерполяция
- 8. Интерполяция функций Кубическая сплайн-интерполяция
- Интерполяция средствами MathCad
- 9. Математическая обработка экспериментальных данных Элементы теории ошибок
- Элементы теории ошибок Случайные ошибки
- Аппроксимация в виде линейной комбинации функций
- Полиномиальная аппроксимация в Mathcad
- С помощью функции regress
- 11. Численное интегрирование и дифференцирование Численное интегрирование
- Методы прямоугольников
- Метод трапеций
- Метод Симпсона
- Метод Монте - Карло
- Численное дифференцирование
- 12. Решение обыкновенных дифференциальных уравнений
- Одношаговые методы решения задачи Коши
- Общая характеристика одношаговых методов
- 13. Решение дифференциальных уравнений в частных производных Уравнения первого порядка
- Типы дифференциальных уравнений в частных производных
- Уравнения первого порядка
- Лабораторная работа
- Варианты задания 1
- Варианты задания 2
- Варианты задания 3
- Локальная интерполяция
- Предсказание
- Варианты заданий 4
- Полиномиальная регрессия
- Обобщенная регрессия
- Варианты задания 5
- Численное интегрирование и дифференцирование
- Варианты задания 6