logo
Численные методы

Численное дифференцирование

При решении практических задач часто нужно найти производную функции y=f(x), заданной таблично. Возможно также, что в силу сложности аналитического выражения функции f(x) непосредственное дифференцирование ее затруднительно. В этих случаях обычно прибегают к приближенному дифференцированию.

Для вывода формул приближенного дифференцирования заменяют данную функцию f(x) на интересующем отрезке [a, b] интерполирующей функцией P(x), а затем полагают:

                                     при                                         (11.15)

 Если для интерполирующей функции P(x) известна погрешность:

R(x)=f(x)-P(x),

то погрешность производной  выражается формулой:

                                                                             (11.16)

т.е. погрешность производной интерполирующей функции равна производной от погрешности этой функции. То же самое справедливо и для производных высших порядков.

Следует отметить, что, вообще говоря, приближенное дифференцирование представляет собой операцию менее точную, чем интерполирование. Действительно, близость друг к другу ординат двух кривых y=f(x) и Y=P(x) на отрезке [a, b]  еще не гарантирует близости на этом отрезке их производных, т.е. малого расхождения коэффициентов касательных к рассматриваемым кривым при одинаковых значениях аргумента.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4