1)Площадь плоской фигуры.
Площадь криволинейной трапеции, ограниченной неотрицательной функцией f (x), осью абсцисс и прямыми x = a, x = b, определяется как
Площадь фигуры, ограниченной функцией f (x), пересекающей ось абсцисс, определяется формулой
где xi – нули функции. Другими словами, чтобы вычислить площадь этой фигуры, нужно разбить отрезок [a; b] нулями функции f (x) на части, проинтегрировать функцию f по каждому из получившихся промежутков знакопостоянства, сложить отдельно интегралы по отрезкам, на которых функция f принимает разные знаки, и вычесть из первого второе.
2)Длина дуги кривой.
Пусть задана кривая Тогда длина ее участка, ограниченного значениями t = α и t = β выражается формулой
В частности, длина плоской кривой, задаваемой на координатной плоскости OXY уравнением y = f (x), a ≤ x ≤ b, выражается формулой
3)Объем тела вращения.
Пусть тело образовано вращением вокруг оси OX криволинейной трапеции, ограниченной непрерывной на отрезке [a; b] функцией f (x). Его объем выражается формулой
Пусть тело заключено между плоскостями x = a и x = b, а площадь его сечения плоскостью, проходящей через точку x, – непрерывная на отрезке [a; b] функция σ (x). Тогда его объем равен
4)Площадь в полярных координатах
Напомним, что определением интеграла служит предел интегральных сумм, взятый при условии измельчения разбиения отрезка интегрирования. Этим определением мы воспользуемся для нахождения площади в следующем случае.
Площадь кругового сектора подсчитывается по формуле
Более кратко эту формулу можно записать так:
5)Масса проволоки через плотность.
20.Несобственные интегралы первого рода
Пусть
1. функция определена на отрезке ;
2. существует .
Произведем теперь предельный переход . Тогда называется несобственным интегралом первого рода и обозначается символом :
= .
Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится (или: существует). Если этот предел равен бесконечности или вообще не существует, то говорят, что несобственный интеграл расходится (или: не существует).
Совершенно аналогично определяются и следующие несобственные интегралы первого рода:
(а любое).
Пример.
- не существует.
Несобственный интеграл расходится.
Пример.
- интеграл сходится
21.Несобственные интегралы второго рода.
Пусть с есть особая точка функции и . Тогда, как уже говорилось выше,
.
Снова обратите внимание на то, что в этом определении два предела и величины 1 и 2 никак друг с другом не связаны. Главное значение этого интеграла определяется так
,
то есть величины 1 и 2 стали одинаковыми и предел один.
Рассмотрим пример на вычисление главного значения. Пусть мы имеем интеграл и . Тогда имеем
.
Но если 1 и 2 никак друг с другом не связаны, то отношение может быть любым, и при , предел не существует. Но если считать, что 1 = 2, то и поэтому
,
и интеграл существует в смысле главного значения.
- 1.Неопределенный интеграл.
- 2. Первообразные элем.Функций.
- 3.Замена переменных в неопр.Интегралле.
- 4.Интегрирование по частям.
- 5.Интегрирование иррациональных функций.
- 6.Элементарные рац.Функции и интегралы от них.
- 7.Алгоритм
- 8.Интегрирование функций, содержащих радикалы.
- 9.Интегрирование биноминальных дифференциалов.
- 11.Тригонометрическая подстановка.
- 12.Интегр.Функций содержащих показ.Функции
- 13.Определенный интеграл.
- 14.Класс интегрируемых функций
- 15.Определенный интеграл как функция верхнего предела
- 16.Теорема: (Теорема Ньютона – Лейбница)
- 17.Замена переменных.
- 18.Интегрирование по частям.
- 19.Приложения опред. Интеграла
- 1)Площадь плоской фигуры.
- 22.Интеграл Эйлера I рода
- 23.Интеграл Эйлера I I рода
- 24.Функции нескольких переменных
- 25. Непрерывные функции
- 26.Дифференцирование функций нескольких переменных.
- 27.Производная сложной функции
- 28.Частные дифференциалы и дифференциал функции
- 29.Частные производные высших порядков.
- 30.Дифференциалы высших порядков.
- 31.Формула Тейлора
- 32.Градиент.
- 33.Экстремум функции нескольких переменных.
- 34.Теорема. (Достаточные условия экстремума).
- 35.Условный экстремум.
- 36.Билинейная и квадратичная форма
- 38.Второй дифф.Как квадрат.Форма
- 39.Пространства.
- 40.Основные понятия теории дифференциальных уравнений.
- 41.Дифференциальные уравнения первого порядка
- 42.Уравнения с разделяющимися переменными.
- 43.Однородное дифференциальное уравнение первого порядка.
- 44.Уравнения, приводящиеся к однородным. К таким уравнениям относят уравнения вида:
- 45.Линейное уравнение первого порядка
- 46.Уравнение Бернулли
- 47.Уравнение Риккати
- 48.Уравнение в полных дифференциалах и их решение
- 49.Интегральный множитель и его нахождение
- 50.Дифференциального уравнения n-го порядка.
- 51.Диф.Ур.Высшего порядка.Способы пониж.Порядка
- Уравнения, не содержащие явно искомой функции
- 52.Линейные однородные дифференциальные уравнения с
- Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- 54.Метод вариации
- 55.Метод неопределенных коэффициентов.
- 56.Метод Коши
- 57.Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- 58.Нормальные системы обыкновенных дифференциальных уравнений.
- 59.Метод сведения к одному уравнению.
- 60.Метод интегрируемых комбинаций
- 61. Нормальные системы обыкновенных дифференциальных уравнений.
- 62.Фундаментальная система решений как базис линейного пространства решений однородной линейной системы
- 68.Определитель Вронского
- 64.Системы линейных уравнений первого порядка с постоянными коэффициентами: однородные и неоднородные. Структура решения. Алгоритм решения.
- 65.Преобразование Лапласа.
- 66.Интегралл Лапласа и его свойства
- 67.Свойства 1-6 преобразования Лапласа.
- 68.Свойства 7-12 преобразования Лапласа.
- 70.Таблица изображений некоторых функций.
- 72.Интеграл Дюамеля
- 73.Достаточные условия существования оригинала
- 75.Решение уравнений методом Дюамеля.