15.Определенный интеграл как функция верхнего предела
Пусть функция f(t) определена и непрерывна на некотором промежутке, содержащем точку a. Тогда каждому числу x из этого промежутка можно поставить в соответствие число
,
определив тем самым на промежутке функцию I(x), которая называется определенным интегралом с переменным верхним пределом. Отметим, что в точке x = a эта функция равна нулю. Вычислим производную этой функции в точке x. Для этого сначала рассмотрим приращение функции в точке x при приращении аргумента x:
I(x) = I(x + x) – I(x) = .
Как показано на рисунке 1, величина последнего интеграла в формуле для приращения I(x) равна площади криволинейной трапеции, отмеченной штриховкой. При малых величинах x (здесь, так же как и везде в этом курсе, говоря о малых величинах приращений аргумента или функции, имеем в виду абсолютные величины приращений, так как сами приращения могут быть и положительными и отрицательными) эта площадь оказывается приблизительно равной площади прямоугольника, отмеченного на рисунке двойной штриховкой. Площадь прямоугольника определяется формулой f(x)x. Отсюда получаем соотношение
В последнем приближенном равенстве точность приближения тем выше, чем меньше величина x.
Из сказанного следует формула для производной функции I(x):
Производная определенного интеграла по верхнему пределу в точке x равна значению подынтегральной функции в точке x. Отсюда следует, что функция является первообразной для функции f(x), причем такой первообразной, которая принимает в точке x = a значение, равное нулю. Этот факт дает возможность представить определенный интеграл в виде
Пусть F(x) тоже является первообразной для функции f(x), тогда по теореме об общем виде всех первообразных функции I(x) = F(x) + C, где C — некоторое число. При этом правая часть формулы (1) принимает вид
Из формул (1) и (2) после замены x на b следует формула для вычисления определенного интеграла от функции f(t) по промежутку [a;b]:
, которая называется формулой Ньютона-Лейбница. Здесь F(x) — любая первообразная функции f(x).
Yandex.RTB R-A-252273-3
- 1.Неопределенный интеграл.
- 2. Первообразные элем.Функций.
- 3.Замена переменных в неопр.Интегралле.
- 4.Интегрирование по частям.
- 5.Интегрирование иррациональных функций.
- 6.Элементарные рац.Функции и интегралы от них.
- 7.Алгоритм
- 8.Интегрирование функций, содержащих радикалы.
- 9.Интегрирование биноминальных дифференциалов.
- 11.Тригонометрическая подстановка.
- 12.Интегр.Функций содержащих показ.Функции
- 13.Определенный интеграл.
- 14.Класс интегрируемых функций
- 15.Определенный интеграл как функция верхнего предела
- 16.Теорема: (Теорема Ньютона – Лейбница)
- 17.Замена переменных.
- 18.Интегрирование по частям.
- 19.Приложения опред. Интеграла
- 1)Площадь плоской фигуры.
- 22.Интеграл Эйлера I рода
- 23.Интеграл Эйлера I I рода
- 24.Функции нескольких переменных
- 25. Непрерывные функции
- 26.Дифференцирование функций нескольких переменных.
- 27.Производная сложной функции
- 28.Частные дифференциалы и дифференциал функции
- 29.Частные производные высших порядков.
- 30.Дифференциалы высших порядков.
- 31.Формула Тейлора
- 32.Градиент.
- 33.Экстремум функции нескольких переменных.
- 34.Теорема. (Достаточные условия экстремума).
- 35.Условный экстремум.
- 36.Билинейная и квадратичная форма
- 38.Второй дифф.Как квадрат.Форма
- 39.Пространства.
- 40.Основные понятия теории дифференциальных уравнений.
- 41.Дифференциальные уравнения первого порядка
- 42.Уравнения с разделяющимися переменными.
- 43.Однородное дифференциальное уравнение первого порядка.
- 44.Уравнения, приводящиеся к однородным. К таким уравнениям относят уравнения вида:
- 45.Линейное уравнение первого порядка
- 46.Уравнение Бернулли
- 47.Уравнение Риккати
- 48.Уравнение в полных дифференциалах и их решение
- 49.Интегральный множитель и его нахождение
- 50.Дифференциального уравнения n-го порядка.
- 51.Диф.Ур.Высшего порядка.Способы пониж.Порядка
- Уравнения, не содержащие явно искомой функции
- 52.Линейные однородные дифференциальные уравнения с
- Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- 54.Метод вариации
- 55.Метод неопределенных коэффициентов.
- 56.Метод Коши
- 57.Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- 58.Нормальные системы обыкновенных дифференциальных уравнений.
- 59.Метод сведения к одному уравнению.
- 60.Метод интегрируемых комбинаций
- 61. Нормальные системы обыкновенных дифференциальных уравнений.
- 62.Фундаментальная система решений как базис линейного пространства решений однородной линейной системы
- 68.Определитель Вронского
- 64.Системы линейных уравнений первого порядка с постоянными коэффициентами: однородные и неоднородные. Структура решения. Алгоритм решения.
- 65.Преобразование Лапласа.
- 66.Интегралл Лапласа и его свойства
- 67.Свойства 1-6 преобразования Лапласа.
- 68.Свойства 7-12 преобразования Лапласа.
- 70.Таблица изображений некоторых функций.
- 72.Интеграл Дюамеля
- 73.Достаточные условия существования оригинала
- 75.Решение уравнений методом Дюамеля.