logo
Шпоры по математике(2 семестр)

15.Определенный интеграл как функция верхнего предела

Пусть функция f(t) определена и непрерывна на некотором промежутке, содержащем точку a. Тогда каждому числу x из этого промежутка можно поставить в соответствие число

,

определив тем самым на промежутке функцию I(x), которая называется определенным интегралом с переменным верхним пределом. Отметим, что в точке x = a эта функция равна нулю. Вычислим производную этой функции в точке x. Для этого сначала рассмотрим прира­щение функции в точке x при приращении аргумента x:

I(x) = I(x + x) – I(x) = .

Как показано на рисунке 1, величина последнего интеграла в формуле для приращения I(x) равна площади криволинейной трапеции, отмеченной штриховкой. При малых величинах x (здесь, так же как и везде в этом курсе, говоря о малых величинах приращений аргумента или функции, имеем в виду абсолютные величины приращений, так как сами приращения могут быть и положительными и отрицательными) эта площадь оказывается приблизительно равной площади прямоугольника, отмеченного на рисунке двойной штриховкой. Площадь прямоугольника определяется формулой f(x)x. Отсюда получаем соотношение

В последнем приближенном равенстве точность приближения тем выше, чем меньше величина x.

Из сказанного следует формула для производной функции I(x):

Производная определенного интеграла по верхнему пределу в точке x равна значению подынтегральной функции в точке x. Отсюда следует, что функция является первообразной для функции f(x), причем такой первообразной, которая принимает в точке x = a значение, равное нулю. Этот факт дает возможность представить определенный интеграл в виде

Пусть F(x) тоже является первообразной для функции f(x), тогда по теореме об общем виде всех первообразных функции I(x) = F(x) + C, где C — некоторое число. При этом правая часть формулы (1) принимает вид

Из формул (1) и (2) после замены x на b следует формула для вычисления определенного интеграла от функции f(t) по промежутку [a;b]:

, которая называется формулой Ньютона-Лейбница. Здесь F(x) — любая первообразная функции f(x).

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4