logo
Шпоры по математике(2 семестр)

3.Замена переменных в неопр.Интегралле.

Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:

Доказательство: Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f(x)dx = f[(t)](t)dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Пример. Найти неопределенный интеграл .

Сделаем замену t = sinx, dt = cosxdt.

Пример.

Замена Получаем:

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4