logo
Шпоры по математике(2 семестр)

64.Системы линейных уравнений первого порядка с постоянными коэффициентами: однородные и неоднородные. Структура решения. Алгоритм решения.

При рассмотрении систем дифференциальных уравнений ограничимся случаем системы трех уравнений (n = 3). Все нижесказанное справедливо для систем произвольного порядка.

Определение. Нормальная система дифференциальных уравнений c постоянными коэффициентами называется линейной однородной, если ее можно записать в виде:

(2)

Решения системы (2) обладают следующими свойствами:

1) Если y, z, uрешения системы, то Cy, Cz, Cu , где C = constтоже являются решениями этой системы.

2) Если y1, z1, u1 и y2, z2, u2 – решения системы, то y1 + y2, z1 + z2, u1 + u2 тоже являются решениями системы.

Решения системы ищутся в виде:

Подставляя эти значения в систему (2) и перенеся все члены в одну сторону и сократив на ekx, получаем:

Для того, чтобы полученная система имела ненулевое решение необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.:

В результате вычисления определителя получаем уравнение третьей степени относительно k. Это уравнение называется характеристическим уравнением и имеет три корня k1, k2, k3. Каждому из этих корней соответствует ненулевое решение системы (2):

Линейная комбинация этих решений с произвольными коэффициентами будет решением системы (2):

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4