logo
Шпоры по математике(2 семестр)

13.Определенный интеграл.

Пусть функция определена на интервале . Выберем разбиение отрезка с помощью точек на более мелкие отрезки . Внутри каждого из последних отрезков выберем точку . Тогда число, равное , называется соответствующей интегральной суммой.

Определение: Если при любых разбиениях отрезка [a, b] таких, что maxxi 0 и произвольном выборе точек i интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].

Обозначение :

а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.

Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].

Также верны утверждения:

Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

Свойства определенного интеграла.

  1. Если f(x)  (x) на отрезке [a, b] a < b, то

  1. Если m и M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то:

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4