36.Билинейная и квадратичная форма
Квадратичной формой называется функция B(x) = A(x,x) из линейного пространства L над произвольным полем F характеристики не 2 в поле F, которая получается из билинейной формы A(x,y) при x = y.
При фиксированном базисе в L квадратичная форма имеет вид
где , а aij = aji.
Матрицу (aij) называют матрицей квадратичной формы в данном базисе.
Свойства
Симметричную билинейную форму A(x,y), называют полярной квадратичной форме A(x,x). Матрица билинейной формы в произвольном базисе совпадает с матрицей полярной ей билинейной формы в том же базисе.
Если матрица квадратичной формы имеет полный ранг, то квадратичную форму называют невырожденной, иначе - вырожденной.
Квадратичная форма A(x,x) называется положительно (отрицательно) определённой, если для любого A(x,x) > 0 (A(x,x) < 0). Положительно определённые и отрицательно определённые формы называются знакоопределёнными.
Квадратичная форма является положительно определенной, тогда и только тогда, когда все угловые миноры её матрицы строго положительны.
Квадратичная форма является отрицательно определенной, тогда и только тогда, когда знаки всех угловых миноров её матрицы чередуются, причем минор порядка 1 отрицателен.
Квадратичная форма A(x,x) называется знакопеременной, если она принимает как положительные, так и отрицательные значения.
Квадратичная форма A(x,x) называется квазизнакоопределённой, если , но форма не является знакоопределённой.
Билинейной формой (также: функционалом, функцией) называется функция или
(где L — произвольное линейное пространство, обычно соответственно над или ),
линейная по каждому из аргументов:
,
,
,
.
Билинейная форма (функционал) называется симметричной, если для любых выполнено ,
билинейная форма(функционал) называется кососимметричной (антисимметричной), если для любых выполнено
Свойства
Любую билинейную форму можно представить в виде суммы симметричной и кососимметричной.
При выбранном базисе в L любая билинейная форма однозначно определяется матрицей
так что для любых и
то есть
37.Критерий Сильвестра определяет, является ли симметричная квадратная матрица положительно (отрицательно, неотрицательно) определённой.
Пусть квадратичная форма имеет в каком-то базисе матрицу (aij). Тогда эта форма положительно определена, если и только если все её угловые миноры Δi положительны, отрицательно определена, если и только если их знаки чередуются, причём Δ1 < 0, и неотрицательно определена если и только если все её главные миноры неотрицательны.
Доказательство критерия Сильвестра основано на методе Якоби приведения квадратичной формы к каноническому виду.
критерий Сильвестра:
1)Билинейная форма, полярная положительно определённой квадратичной форме удовлетворяет всем аксиомам скалярного произведения.
2)Для любой квадратичной формы существует базис, в котором её матрица диагональна, а сама форма имеет канонический вид: A(x,x) = λi(xi)2. Для приведения квадратичной формы к каноническому виду используется метод Лагранжа.
- 1.Неопределенный интеграл.
- 2. Первообразные элем.Функций.
- 3.Замена переменных в неопр.Интегралле.
- 4.Интегрирование по частям.
- 5.Интегрирование иррациональных функций.
- 6.Элементарные рац.Функции и интегралы от них.
- 7.Алгоритм
- 8.Интегрирование функций, содержащих радикалы.
- 9.Интегрирование биноминальных дифференциалов.
- 11.Тригонометрическая подстановка.
- 12.Интегр.Функций содержащих показ.Функции
- 13.Определенный интеграл.
- 14.Класс интегрируемых функций
- 15.Определенный интеграл как функция верхнего предела
- 16.Теорема: (Теорема Ньютона – Лейбница)
- 17.Замена переменных.
- 18.Интегрирование по частям.
- 19.Приложения опред. Интеграла
- 1)Площадь плоской фигуры.
- 22.Интеграл Эйлера I рода
- 23.Интеграл Эйлера I I рода
- 24.Функции нескольких переменных
- 25. Непрерывные функции
- 26.Дифференцирование функций нескольких переменных.
- 27.Производная сложной функции
- 28.Частные дифференциалы и дифференциал функции
- 29.Частные производные высших порядков.
- 30.Дифференциалы высших порядков.
- 31.Формула Тейлора
- 32.Градиент.
- 33.Экстремум функции нескольких переменных.
- 34.Теорема. (Достаточные условия экстремума).
- 35.Условный экстремум.
- 36.Билинейная и квадратичная форма
- 38.Второй дифф.Как квадрат.Форма
- 39.Пространства.
- 40.Основные понятия теории дифференциальных уравнений.
- 41.Дифференциальные уравнения первого порядка
- 42.Уравнения с разделяющимися переменными.
- 43.Однородное дифференциальное уравнение первого порядка.
- 44.Уравнения, приводящиеся к однородным. К таким уравнениям относят уравнения вида:
- 45.Линейное уравнение первого порядка
- 46.Уравнение Бернулли
- 47.Уравнение Риккати
- 48.Уравнение в полных дифференциалах и их решение
- 49.Интегральный множитель и его нахождение
- 50.Дифференциального уравнения n-го порядка.
- 51.Диф.Ур.Высшего порядка.Способы пониж.Порядка
- Уравнения, не содержащие явно искомой функции
- 52.Линейные однородные дифференциальные уравнения с
- Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- 54.Метод вариации
- 55.Метод неопределенных коэффициентов.
- 56.Метод Коши
- 57.Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- 58.Нормальные системы обыкновенных дифференциальных уравнений.
- 59.Метод сведения к одному уравнению.
- 60.Метод интегрируемых комбинаций
- 61. Нормальные системы обыкновенных дифференциальных уравнений.
- 62.Фундаментальная система решений как базис линейного пространства решений однородной линейной системы
- 68.Определитель Вронского
- 64.Системы линейных уравнений первого порядка с постоянными коэффициентами: однородные и неоднородные. Структура решения. Алгоритм решения.
- 65.Преобразование Лапласа.
- 66.Интегралл Лапласа и его свойства
- 67.Свойства 1-6 преобразования Лапласа.
- 68.Свойства 7-12 преобразования Лапласа.
- 70.Таблица изображений некоторых функций.
- 72.Интеграл Дюамеля
- 73.Достаточные условия существования оригинала
- 75.Решение уравнений методом Дюамеля.