50.Дифференциального уравнения n-го порядка.
Дифференциальным уравнением называется равенство вида
F(x, y, y', …, y(n)) = 0,
где F(t1, t2, …, tn+2) функция (n+2)-х переменных, выражающая связь между аргументом x, неизвестной функцией y и ее производными. Порядок n старшей производной, входящей в уравнении, называется порядком уравнения (конечно, не все участники, приведенные в определении, могут реально входить в уравнение: некоторые из производных, и также сама функция y(x) или даже аргумент x могут в уравнении явно не присутствовать).
Общий вид дифференциального уравнения первого порядка выглядит так:
F(x, y, y') = 0.
семейство функций y = (x, C1, C2, ..., Cn) называется общим решением дифферециального уравнения n-го порядка, если при любом выборе значений C1, C2, ..., Cn оно является частным решением уравнения. В п. 1.7. выяснится, почему число постоянных Ci должно быть именно равным порядку n.
Теорема существования и единственности для дифференциального уравнения n-го порядка.
Пусть дан (n+1)-мерный параллелепипед = {(x1,…,xn+1) | ai<xi<bi для всех i=1,…,n+1} и функция f (x1,…,xn+1), непрерывная и имеющая непрерывные производные всюду в области . Тогда для любой точки (x0;y0;y'0;…;y0(n+1)) области существует единственное решение дифференциального уравнения
y(n) = f(x, y, y', …, y(n-1)),
удовлетворяющее начальным условиям y(x0) = y0, y'(x0) = y'0,…, y(n+1)(x0) = y0(n+1).
- 1.Неопределенный интеграл.
- 2. Первообразные элем.Функций.
- 3.Замена переменных в неопр.Интегралле.
- 4.Интегрирование по частям.
- 5.Интегрирование иррациональных функций.
- 6.Элементарные рац.Функции и интегралы от них.
- 7.Алгоритм
- 8.Интегрирование функций, содержащих радикалы.
- 9.Интегрирование биноминальных дифференциалов.
- 11.Тригонометрическая подстановка.
- 12.Интегр.Функций содержащих показ.Функции
- 13.Определенный интеграл.
- 14.Класс интегрируемых функций
- 15.Определенный интеграл как функция верхнего предела
- 16.Теорема: (Теорема Ньютона – Лейбница)
- 17.Замена переменных.
- 18.Интегрирование по частям.
- 19.Приложения опред. Интеграла
- 1)Площадь плоской фигуры.
- 22.Интеграл Эйлера I рода
- 23.Интеграл Эйлера I I рода
- 24.Функции нескольких переменных
- 25. Непрерывные функции
- 26.Дифференцирование функций нескольких переменных.
- 27.Производная сложной функции
- 28.Частные дифференциалы и дифференциал функции
- 29.Частные производные высших порядков.
- 30.Дифференциалы высших порядков.
- 31.Формула Тейлора
- 32.Градиент.
- 33.Экстремум функции нескольких переменных.
- 34.Теорема. (Достаточные условия экстремума).
- 35.Условный экстремум.
- 36.Билинейная и квадратичная форма
- 38.Второй дифф.Как квадрат.Форма
- 39.Пространства.
- 40.Основные понятия теории дифференциальных уравнений.
- 41.Дифференциальные уравнения первого порядка
- 42.Уравнения с разделяющимися переменными.
- 43.Однородное дифференциальное уравнение первого порядка.
- 44.Уравнения, приводящиеся к однородным. К таким уравнениям относят уравнения вида:
- 45.Линейное уравнение первого порядка
- 46.Уравнение Бернулли
- 47.Уравнение Риккати
- 48.Уравнение в полных дифференциалах и их решение
- 49.Интегральный множитель и его нахождение
- 50.Дифференциального уравнения n-го порядка.
- 51.Диф.Ур.Высшего порядка.Способы пониж.Порядка
- Уравнения, не содержащие явно искомой функции
- 52.Линейные однородные дифференциальные уравнения с
- Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- 54.Метод вариации
- 55.Метод неопределенных коэффициентов.
- 56.Метод Коши
- 57.Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Уравнения с правой частью специального вида.
- 58.Нормальные системы обыкновенных дифференциальных уравнений.
- 59.Метод сведения к одному уравнению.
- 60.Метод интегрируемых комбинаций
- 61. Нормальные системы обыкновенных дифференциальных уравнений.
- 62.Фундаментальная система решений как базис линейного пространства решений однородной линейной системы
- 68.Определитель Вронского
- 64.Системы линейных уравнений первого порядка с постоянными коэффициентами: однородные и неоднородные. Структура решения. Алгоритм решения.
- 65.Преобразование Лапласа.
- 66.Интегралл Лапласа и его свойства
- 67.Свойства 1-6 преобразования Лапласа.
- 68.Свойства 7-12 преобразования Лапласа.
- 70.Таблица изображений некоторых функций.
- 72.Интеграл Дюамеля
- 73.Достаточные условия существования оригинала
- 75.Решение уравнений методом Дюамеля.