§11. Ранг матрицы.
Определение. Рангом системы строк (системы столбцов) матрицы A называется максимальное количество её линейно независимых строк (столбцов). Т.е. говорим, что ранг системы строк матрицы A равен r1, если в матрице существует r1 линейно независимых строк, а любые r1+1 строк линейно зависимы; говорим, что ранг системы столбцов матрицы A равен r2, если в матрице существует r2 линейно независимых столбцов, а любые r2+1 столбцов линейно зависимы.
Определение. Рангом матрицы A называется максимальная размерность её ненулевого минора. Т.е. говорим, что ранг матрицы A равен r, если в ней существует ненулевой минор порядка r, а любой минор порядка r+1 равен нулю (или таких миноров вообще нет).
Ранг матрицы обозначаем rankA или rkA. Если L – ненулевой минор порядка r, то он называется базисным минором. В матрице может быть несколько базисных миноров. Строки и столбцы, в которых расположен базисный минор будем называть базисными.
Пример 3. В следующей матрице первая и вторая строки пропорциональны, а третья строка им не пропорциональна.
A= .
Поэтому в матрице есть 2 линейно независимые сроки, а 3 строки линейно зависимы. Значит ранг системы строк матрицы A равен 2.
Минор
L12;23 = 0,
а любой минор порядка три должен включать в себя часть первой и часть второй сроки. Поэтому любой минор порядка 3 равен нулю. Значит, L12;23 – базисный минор и rankA=2. Также базисными будут миноры L13;23 , L14;23 , L34;23 , L24;23 .
Перебирать все миноры в поисках базисного – это очень трудоёмкая задача. Поэтому можно использовать метод окаймляющих миноров. Если мы нашли ненулевой минор L порядка k, то мы затем перебираем не все миноры порядка k+1, а только те, которые содержат в себе минор L (их будем называть окаймляющими). Если все окаймляющие миноры окажутся равными нулю, то и все миноры порядка k+1 тоже будут равны нулю, и мы сделаем вывод, что rankA=k. Если среди окаймляющих миноров мы найдём ненулевой минор L, то переходим к минорам порядка k+2, которые содержат в себе L, и т.д.
Другой метод вычисления ранга матрицы и нахождения базисного минора – это метод Гаусса. С подобным методом мы уже познакомились, когда приводили матрицу к треугольному виду с целью вычислить её определитель. При вычислении ранга матрицы мы можем позволить себе больше видов действий.
Назовём элементарными преобразованиями матрицы следующие преобразования.
1. Вычёркивание срок и столбцов, которые состоят только из нулей.
2. Перестановка строк или столбцов.
3. Умножение строки или столбца на число не равное нулю.
4. Прибавление к одной строке (столбцу) матрицы другой строки (столбца), домноженной на некоторое число.
Предложение 4. Элементарные преобразования не изменяют ранга матрицы.
Шаг 1. Вычеркнем все строки и столбцы, состоящие только из нулей.
Шаг 2. В первом столбце матрицы выберем ненулевой элемент и строку, в которой он находится, поставим на первое место.
Шаг 3. Разделим первую строку на a1;1. К каждой i-ой строке матрицы прибавим первую строку, домноженную на число a1; i. В результате мы получим матрицу вида
A= .
Шаг 4. Совершаем те же действия над матрицей
B=,
совершая их на самом деле над всей матрицей. Т.е., если в матрице B какой-либо столбец равен нулю, то мы вычёркиваем его во всей матрице A. В результате мы получим матрицу вида
A= .
Шаг 5. Совершаем те же самые действия, которые были описаны выше с матрицей
,
совершая на самом деле их над всей матрицей A.
В конечном итоге мы получим матрицу вида
, (1.12)
определитель которой равен 1. Сколько в этой матрице осталось строк и столбцов, таков и ранг матрицы. Для того, чтобы указать в исходной матрице A базисный минор, надо вспомнить какие номера в ней имели оставшиеся не вычеркнутыми строки и столбцы. В этих сроках и столбцах находится базисный минор.
В процессе преобразований мы вычеркнули все строки, которые не были базисными, т.е. они превратились в нулевые. До этого мы прибавляли к ним другие строки, домноженные на некоторые числа. Получается, что небазисные строки являются линейной комбинацией тех строк, которые мы к ним прибавляли. Мы могли совершать элементарные преобразования над столбцами матрицы и прийти к аналогичному выводу для столбцов. Отсюда вытекает теорема.
Теорема 1.4. (О базисном миноре) Любая строка матрицы является линейной комбинацией базисных строк, а любой столбец – линейной комбинацией базисных столбцов.
Следующую теорему примем без доказательства.
Теорема 1.5. (О ранге матрицы) Ранг системы строк матрицы равен рангу системы столбцов и равен рангу матрицы.
Мы можем продолжить элементарные преобразования матрицы (1.12) и с помощью единиц, стоящих на диагонали занулить все элементы, обозначенные звёздочками. В результате мы получим единичную матрицу. Тем самым мы базисный минор можем привести к виду единичной матрицы. Если исходная матрица A является квадратной и для неё detA0, то этот определитель и будет её базисным минором. При этом все столбцы будут базисными, и нам не придётся вычёркивать столбцы в процессе элементарных преобразований. Отсюда вытекает теорема.
Теорема 1.6. Если для квадратной матрицы detA0, то с помощью элементарных преобразований одних только строк матрицы мы можем привести эту матрицу к виду единичной матрицы.
Если не вычёркивать столбцы в матрице, но допускать их перестановку, то с помощью элементарных преобразований строк мы можем привести матрицу к виду
.
Для этого нам понадобится на первое место переставить базисные столбцы. Все оставшиеся не вычеркнутыми строки будут базисными и их количество равно рангу матрицы. Этот результат окажется нам очень полезным, когда мы будем вести речь о решении СЛУ методом Гаусса. Затем, с помощью выделенных единиц мы можем занулить все стоящие выше их элементы и наша матрица примет вид
. (1.13)
Теорема 1.4. Если для квадратной матрицы detA=0, её строки столбцы линейно зависимы (без доказательства).
Yandex.RTB R-A-252273-3- Аналитическая геометрия и высшая алгебра
- Глава 1. Матрицы и определители §1. Матрицы. Основные определения.
- §2. Линейные операции над матрицами.
- §3. Линейная зависимость строк и столбцов.
- §4. Определитель матрицы.
- §5. Свойства определителя.
- §6. Приведение к диагональному виду.
- §7. Миноры произвольного порядка. Теорема Лапласа.
- §8. Перестановки.
- §9. Формула полного разложения определителя по элементам матрицы.
- §10. Системы линейных уравнений. Правило Крамера.
- §11. Ранг матрицы.
- §12. Умножение матриц.
- §13. Обратная матрица.
- §14. Решение системы линейных уравнений с помощью обратной матрицы.
- §15. Ортогональная матрица.
- Задания для самостоятельного решения.
- Глава 2. Комплексные числа и многочлены §1. Комплексные числа. Операции над ними.
- §2. Тригонометрическая форма комплексного числа.
- §3. Многочлены.
- §4. Комплексные матрицы.
- Глава 3. Векторные пространства
- §1. Векторное пространство. Линейная зависимость векторов
- §2. Базис и координаты в векторном пространстве
- §3. Преобразование координат
- §4. Евклидово векторное пространство. Неравенство Коши-Буняковского
- §5. Ортонормированный базис. Процесс ортогонализации. Матрица Грамма.
- §6. Векторные подпространства. Ортогональное дополнение.
- Глава 4. Системы линейных уравнений §1. Теорема Кронекера-Капелли. Нахождение решения.
- §2. Однородная система линейных уравнений. Фундаментальная система решений.
- §3. Общее решение неоднородной системы линейных уравнений.
- §4. Примеры решения задач.
- Советы по поводу особых ситуаций.
- Задания для самостоятельного решения.
- Глава 5. Линейные операторы §1. Понятие линейного оператора. Его матрица, ранг и дефект.
- §2. Действия над линейными операторами.
- §3. Изменение матрицы линейного оператора при замене базиса.
- §4. Собственные числа и собственные векторы линейного оператора
- §5. Линейные операторы в евклидовом пространстве
- Глава 6. Билинейные функции и квадратичные формы §1. Линейные функции
- §2. Билинейные функции
- §3. Приведение квадратичной формы к диагональному и каноническому виду
- §4. Одновременное приведение двух квадратичных форм к диагональному виду
- §5. Пространство Минковского m4.
- Глава 7. Элементы теории групп §1. Понятие группы. Примеры.
- §2. Группа преобразований плоскости Минковского.
- Используемые сокращения
- Алфавитный указатель Литература