§3. Изменение матрицы линейного оператора при замене базиса.
Пусть в векторном пространстве Ln выбраны два базиса: B = {e1, e2,…, en}, B = {e1, e2,…, en} и пусть C – матрица перехода.. Пусть A и A матрицы оператора A:Ln – Ln в первом и втором базисах. Нам нужно найти связь между этими матрицами.
Пусть xLn произвольный вектор, X и X – его координатные столбцы в первом и втором базисах. Пусть y=Ax, Y и Y – его координатные столбцы в первом и втором базисах. Действие оператора относительно первого базисов задаётся формулами
Y=AX, Y=AX. (5.4)
Мы знаем, как преобразуются координаты векторов при замене базиса:
Y=CY, X=CX.
Подставляем эти равенства в первое из равенств (5.4):
CY=A(CX) Y=(C1AC)X.
Сравниваем это равенство со вторым из равенств (5.4). Мы видим, что
A=C1AC (5.5)
Это и есть закон преобразования матрицы линейного оператора, при переходе к новому базису.
Yandex.RTB R-A-252273-3- Аналитическая геометрия и высшая алгебра
- Глава 1. Матрицы и определители §1. Матрицы. Основные определения.
- §2. Линейные операции над матрицами.
- §3. Линейная зависимость строк и столбцов.
- §4. Определитель матрицы.
- §5. Свойства определителя.
- §6. Приведение к диагональному виду.
- §7. Миноры произвольного порядка. Теорема Лапласа.
- §8. Перестановки.
- §9. Формула полного разложения определителя по элементам матрицы.
- §10. Системы линейных уравнений. Правило Крамера.
- §11. Ранг матрицы.
- §12. Умножение матриц.
- §13. Обратная матрица.
- §14. Решение системы линейных уравнений с помощью обратной матрицы.
- §15. Ортогональная матрица.
- Задания для самостоятельного решения.
- Глава 2. Комплексные числа и многочлены §1. Комплексные числа. Операции над ними.
- §2. Тригонометрическая форма комплексного числа.
- §3. Многочлены.
- §4. Комплексные матрицы.
- Глава 3. Векторные пространства
- §1. Векторное пространство. Линейная зависимость векторов
- §2. Базис и координаты в векторном пространстве
- §3. Преобразование координат
- §4. Евклидово векторное пространство. Неравенство Коши-Буняковского
- §5. Ортонормированный базис. Процесс ортогонализации. Матрица Грамма.
- §6. Векторные подпространства. Ортогональное дополнение.
- Глава 4. Системы линейных уравнений §1. Теорема Кронекера-Капелли. Нахождение решения.
- §2. Однородная система линейных уравнений. Фундаментальная система решений.
- §3. Общее решение неоднородной системы линейных уравнений.
- §4. Примеры решения задач.
- Советы по поводу особых ситуаций.
- Задания для самостоятельного решения.
- Глава 5. Линейные операторы §1. Понятие линейного оператора. Его матрица, ранг и дефект.
- §2. Действия над линейными операторами.
- §3. Изменение матрицы линейного оператора при замене базиса.
- §4. Собственные числа и собственные векторы линейного оператора
- §5. Линейные операторы в евклидовом пространстве
- Глава 6. Билинейные функции и квадратичные формы §1. Линейные функции
- §2. Билинейные функции
- §3. Приведение квадратичной формы к диагональному и каноническому виду
- §4. Одновременное приведение двух квадратичных форм к диагональному виду
- §5. Пространство Минковского m4.
- Глава 7. Элементы теории групп §1. Понятие группы. Примеры.
- §2. Группа преобразований плоскости Минковского.
- Используемые сокращения
- Алфавитный указатель Литература