§9. Формула полного разложения определителя по элементам матрицы.
Теорема 1.2. detA = (;\s\do10(I(j1(1)I(j1, j2,…, jn)aj1; 1aj2; 2… ajn;n.
Поясним, что здесь записано. Мы выбираем в матрице n элементов, так чтобы из каждой строки и каждого столбца был выбран ровно один элемент. Мы расположим эти элементы в порядке возрастания номеров строк и составим их произведение. Тогда номера столбцов образуют перестановку I(j1, j2,…, jn). Если эта перестановка нечётная, то мы добавляем к произведению знак минус. Затем мы все такие произведения складываем. Число слагаемых равно числу различных перестановок (j1, j2,…, jn) нижних индексов, т.е. равно n!.
Например, множество индексов {1, 2, 3} имеет 6 перестановок:
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1),
среди которых нечётными являются вторая, третья и шестая. Поэтому разложение определителя третьего порядка имеет вид
= a1;1a1;2a1;3+ a2;1a3;2a1;3+ a3;1a1;2a2;3a1;1a3;2a2;3a2;1a1;2a3;3a3;1a2;2a1;3.
Эту формулу можно запомнить виде схемы
Yandex.RTB R-A-252273-3
- Аналитическая геометрия и высшая алгебра
- Глава 1. Матрицы и определители §1. Матрицы. Основные определения.
- §2. Линейные операции над матрицами.
- §3. Линейная зависимость строк и столбцов.
- §4. Определитель матрицы.
- §5. Свойства определителя.
- §6. Приведение к диагональному виду.
- §7. Миноры произвольного порядка. Теорема Лапласа.
- §8. Перестановки.
- §9. Формула полного разложения определителя по элементам матрицы.
- §10. Системы линейных уравнений. Правило Крамера.
- §11. Ранг матрицы.
- §12. Умножение матриц.
- §13. Обратная матрица.
- §14. Решение системы линейных уравнений с помощью обратной матрицы.
- §15. Ортогональная матрица.
- Задания для самостоятельного решения.
- Глава 2. Комплексные числа и многочлены §1. Комплексные числа. Операции над ними.
- §2. Тригонометрическая форма комплексного числа.
- §3. Многочлены.
- §4. Комплексные матрицы.
- Глава 3. Векторные пространства
- §1. Векторное пространство. Линейная зависимость векторов
- §2. Базис и координаты в векторном пространстве
- §3. Преобразование координат
- §4. Евклидово векторное пространство. Неравенство Коши-Буняковского
- §5. Ортонормированный базис. Процесс ортогонализации. Матрица Грамма.
- §6. Векторные подпространства. Ортогональное дополнение.
- Глава 4. Системы линейных уравнений §1. Теорема Кронекера-Капелли. Нахождение решения.
- §2. Однородная система линейных уравнений. Фундаментальная система решений.
- §3. Общее решение неоднородной системы линейных уравнений.
- §4. Примеры решения задач.
- Советы по поводу особых ситуаций.
- Задания для самостоятельного решения.
- Глава 5. Линейные операторы §1. Понятие линейного оператора. Его матрица, ранг и дефект.
- §2. Действия над линейными операторами.
- §3. Изменение матрицы линейного оператора при замене базиса.
- §4. Собственные числа и собственные векторы линейного оператора
- §5. Линейные операторы в евклидовом пространстве
- Глава 6. Билинейные функции и квадратичные формы §1. Линейные функции
- §2. Билинейные функции
- §3. Приведение квадратичной формы к диагональному и каноническому виду
- §4. Одновременное приведение двух квадратичных форм к диагональному виду
- §5. Пространство Минковского m4.
- Глава 7. Элементы теории групп §1. Понятие группы. Примеры.
- §2. Группа преобразований плоскости Минковского.
- Используемые сокращения
- Алфавитный указатель Литература