11.Основные свойства определенного интеграла.
Основные свойства определенного интеграла:
Интеграл был введен для случая a<b. Обобщим понятие определенного интеграла, на случаи когда a=b, a>b.
1.Если a=b, то по определению на отрезке нулевой длины полагаем, что =0
Если а>b, то по определению =- (4), т.е. когда отрезок [a,b] при a<b пробегает в направлении от b к а, имеем b=X0, а=Xn, Xi=Xi-Xi-1<0
2.Каковы бы ни были числа а, b и с всегда имеет место равенство: = + (здесь и в дальнейшем предполагается, что интегралы, входящие в доказываемые формулы существуют)
Доказательство: Допустим сначала, что а<c<b, т.к. предел интегральной суммы не зависит от способа разбиения отрезка [a,b], то будем проводить разбиение так, чтобы точка с всегда была бы точкой разбиения [a,b]. Если например с=хm, то можно разбить на две суммы: = = + . Переходя в последнем равенстве к пределу при мы и получим искомое равенство.
Суть доказанного свойства состоит в том, что определенный интеграл по всему отрезку равен сумме
интегралов по его частям.
Доказательство для другого расположения точек a, b, c легко сводится к рассмотренному случаю. Пусть, например, а<b<c, тогда по доказанному, имеем: = + , откуда учитывая (4) получаем = - = + , ч.т.д.
3.Постоянный множитель можно выносить за знак определенного интеграла, т.е. =к . Доказательство: действительно, для любого разбиения отрезка [a,b] и любого выбора точек I =k
Переходя к пределу при 0 имеем = = =к = к ., ч.т.д.
4.Определенный интеграл от алгебраической суммы функций равен алгебраической сумме их интегралов, т.е. . Доказательство: действительно, для любого разбиения отрезка [a.b] и любого выбора точек I = Так как = и = , то получаем что = =
Замечание: это свойство имеет место для любого конечного числа слагаемых.
[Т] О среднем
Если функция f(x) непрерывна на сегменте [a,b] то существует т С, принадлежащая этому сегменту, такая что =f(c)(b-a). Эта формула называется формулой среднего значения. Доказательство: Так как f(x) непрерывна на [a,b] то по второй теореме Вейерштрасса, существуют числа m и М такие что f(x)=mf(x)M= f(x). Отсюда находим m(b-a) M(b-a), следовательно, m . Положим, = (mM). Так как заключено между наименьшим и наибольшим значениями непрерывной функции f(x) и на [a,b] то по теореме о прохождении функции через любое промежуточное значение, существует точка с[a,b] такая что f(c)=. Поэтому =f(c), а это равносильно искомому равенству. Величина f(c) называется средним значение функции f(x) на отрезке [a,b]. Замечание: теорема о среднем имеет четкий геометрический смысл: величина определенного интеграла при f(x)>=0 равна площади прямоугольника имеющего высоту f(c) и основание b-a.
- Понятие первообразной. Основные свойства (лемма, теорема)
- Понятие неопределенного интеграла.
- Методы замены переменной
- 4.Метод интегрирования по частям.
- 5.Основные типы интегралов берущихся по частям.
- 6.Теорема о представлении рациональной функции в виде суммы элементарных дробей с неопределенными коэффициентами.
- 7.Метод неопределенных коэффициентов.
- 8.Основные типы интегралов от рациональных функций.
- 9.Понятие интегральной суммы. Геометрический смысл.
- 10.Понятие определенного интеграла.
- 11.Основные свойства определенного интеграла.
- 12.Интеграл с переменным верхним пределом.
- 13.Формула Ньютона-Лейбница.
- Замена переменных в определенном интеграле.
- Формула интегрирования по частям в определенном интеграле.
- Несобственные интегралы с бесконечными пределами.
- 17.Несобственные интегралы от неограниченных функций.
- 18.Метрические, линейные, нормированные, евклидовы пространства.
- 19.Понятие функции n переменный. Предел функции n переменных.
- 20.Непрерывность функции n переменных.
- 21.Непрерывность сложной функции.
- 22.Частные производные функции n переменных.
- 23.Дифференцируемость функции n переменных.
- 24.Дифференциал функции n переменных.
- 25.Дифференцирование сложной функции.
- 26.Производная по направлению. Градиент.
- 27.Частные производные высших порядков функции n переменных.
- 28.Дифференциал второго порядка функции n переменных.
- 29.Квадратичная форма. Критерий Сильвестра.
- 30.Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
- Необходимое условие локального экстремума
- 31.Достаточные условия локального экстремума функции n переменных.
- 32.Неявные функции.
- 33.Условный экстремум
- 34.Метод множителей Лагранжа.
- 35.Определение числового ряда, частичной суммы, сходящегося ряда.
- 36Свойства сходящихся числовых рядов.
- 38.Необходимое и достаточное условие сходимости ряда с неотрицательными членами.
- 39.Признак сравнения.
- 40.Признак Даламбера.
- 42.Знакочередующийся ряд. Признак Лейбница.
- 43.Знакопеременные ряды, их сходимость.
- 44.Степенные ряды.
- 45.Теорема Абеля.
- 46.Теорема об интервале сходимости степенного ряда.
- 47.Теорема о радиусе сходимости степенного ряда