Формула интегрирования по частям в определенном интеграле.
Формула интегрирования по частям в определенном интеграле.
[T] Если функция u(x) и v(x) имеют непрерывные производные на сегменте [a,b] то справедлива формула Доказательство Так как функция u(x) и v(x) по условию имеют производные, то по правилу дифференцирования произведения [u(x)v(x)]’=u(x)v’(x)+v(x)u’(x). Откуда следует, что функция u(x)v(x) является первообразной для функции u(x)v’(x)+v(x)u’(x). А т.к. функция u(x)v’(x)+v(x)u’(x) непрерывна на отрезке [a,b], то интеграл от нее существует, т.е. она интегрируема на этом отрезке и по формуле Ньютона-Лейбница
Отсюда по свойству 4 определенных интегралов получим, что то же , ч т.д.
Приложение определенного интеграла Рассмотрим криволинейную трапецию, ограниченную снизу сегментом [a,b] оси Ох, с боков прямыми x=a, x=b и графиком непрерывной и неотрицательной функции y=f(x) на [a,b]. Докажем, что площадь этой криволинейной трапеции S=
Доказательство: Разобьем произвольно отрезок [a,b] на n частей, т.е. рассмотрим разбиение сегмента [a,b] на {Xn} точками a=Xo<X1<X2<…<Xi-1<Xi<…<Xn=b, выберем на каждом частичном отрезке [Xi-1, Xi], I=1,2,…,n? Произвольно точку I (Xi-1IXi) и рассмотрим ступенчатую фигуру. Ее площадь будет приблизительно равной площади криволинейной трапеции. S , где хi= хi- хi-1.Таким образом, получена интегральная сумма . Т.к. Функция f(x) непрерывна на [a,b], то предел этой суммы существует при = и площадь S криволинейной трапеции численно равна определенному интегралу от функции f(x) на [a,b] S=
Геометрический смысл определнного интеграла: определенный интеграл от неотрицательной непрерывной функции f(x) на [a,b] численно равен площади криволинейной трапеции с основанием [a,b] ограниченной сверху графиком функции y=f(x).
-
Yandex.RTB R-A-252273-3
Содержание
- Понятие первообразной. Основные свойства (лемма, теорема)
- Понятие неопределенного интеграла.
- Методы замены переменной
- 4.Метод интегрирования по частям.
- 5.Основные типы интегралов берущихся по частям.
- 6.Теорема о представлении рациональной функции в виде суммы элементарных дробей с неопределенными коэффициентами.
- 7.Метод неопределенных коэффициентов.
- 8.Основные типы интегралов от рациональных функций.
- 9.Понятие интегральной суммы. Геометрический смысл.
- 10.Понятие определенного интеграла.
- 11.Основные свойства определенного интеграла.
- 12.Интеграл с переменным верхним пределом.
- 13.Формула Ньютона-Лейбница.
- Замена переменных в определенном интеграле.
- Формула интегрирования по частям в определенном интеграле.
- Несобственные интегралы с бесконечными пределами.
- 17.Несобственные интегралы от неограниченных функций.
- 18.Метрические, линейные, нормированные, евклидовы пространства.
- 19.Понятие функции n переменный. Предел функции n переменных.
- 20.Непрерывность функции n переменных.
- 21.Непрерывность сложной функции.
- 22.Частные производные функции n переменных.
- 23.Дифференцируемость функции n переменных.
- 24.Дифференциал функции n переменных.
- 25.Дифференцирование сложной функции.
- 26.Производная по направлению. Градиент.
- 27.Частные производные высших порядков функции n переменных.
- 28.Дифференциал второго порядка функции n переменных.
- 29.Квадратичная форма. Критерий Сильвестра.
- 30.Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
- Необходимое условие локального экстремума
- 31.Достаточные условия локального экстремума функции n переменных.
- 32.Неявные функции.
- 33.Условный экстремум
- 34.Метод множителей Лагранжа.
- 35.Определение числового ряда, частичной суммы, сходящегося ряда.
- 36Свойства сходящихся числовых рядов.
- 38.Необходимое и достаточное условие сходимости ряда с неотрицательными членами.
- 39.Признак сравнения.
- 40.Признак Даламбера.
- 42.Знакочередующийся ряд. Признак Лейбница.
- 43.Знакопеременные ряды, их сходимость.
- 44.Степенные ряды.
- 45.Теорема Абеля.
- 46.Теорема об интервале сходимости степенного ряда.
- 47.Теорема о радиусе сходимости степенного ряда