logo
матан-шпоры

17.Несобственные интегралы от неограниченных функций.

Интегралы от неограниченных функций

Рассмотрим функцию f(x), определенную на промежутке [a,b), но неограниченную на нем. Для определенности положим, что f(x) ограничена и интегрируема на любом отрезке [a,b-], 0< <b-a, но неограниченна в любой окрестности точки b или на промежутке [b-,b]. В таком случае b называется особой точкой.

DEF

Предел интеграла при 0 называется несобственным интегралом второго рода и обозначается . Если этот предел конечный, то говорят что интеграл существует или сходится, а функцию f(x) называют интегрируемой на промежутке [a,b), если предела нет или он бесконечен, то говорят что интеграл расходится. Аналогично, если особой является точка х=а, то несобственных интеграл второго рода определяется как Если функция f(x) не ограничена в окрестности некоторой внутренней точки с[a,b], то по определению полагают , где несобственные интегралы второго рода в правой части этого равенства определяются соответственно по формулам предыдущим. Если а и b особые точки, т.е. функция f(x) ограничена и интегрируема на интервале (a,b), то несобственный интеграл второго рода определяется в виде суммы , где с- произвольная точка на (a,b), а несобственные интегралы второго рода в правой части этого равенства определяются соответственно по формулам.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4