5.Основные типы интегралов берущихся по частям.
Общие рекомендации: Практика показывает, что большая часть интегралов берущихся по частям может быть выделена в следующие группы:
1.Подынтегральная функция содержит в виде множителя одну из следующих функций: arctgx, arcctgx, arcsinx, arccosx, степени этих функций, а также lnx- их полагают за u, а оставшаяся часть это производные известных функций, т.е. интеграл от оставшейся части подынтегрального выражения существует.
2.Интегралы вида (ax+b)n sinkx, (ax+b)n coskx, (ax+b)n екх, где а,b,к=const, n- натуральное число. Эти интегралы берутся n- кратным интегрированием по частям. U=(ax+b)n 1kn, dv- оставшаяся часть выражения.
3.Интегралы вида: ехasin(bx)dx, еaxcos(bx)dx, sin(lnx)dx, cos(lnx)dx. Исходный интеграл обозначается за I, берется 2 раза по частям и получаем в правой части выражение, содержащее исходный интеграл I, т.е. мы получаем уравнение относительно исходного интеграла, решаем его относительно I.
4. Существуют интегралы, берущиеся по частям и не относящиеся ни к какой из вышеперечисленных групп.
Yandex.RTB R-A-252273-3- Понятие первообразной. Основные свойства (лемма, теорема)
- Понятие неопределенного интеграла.
- Методы замены переменной
- 4.Метод интегрирования по частям.
- 5.Основные типы интегралов берущихся по частям.
- 6.Теорема о представлении рациональной функции в виде суммы элементарных дробей с неопределенными коэффициентами.
- 7.Метод неопределенных коэффициентов.
- 8.Основные типы интегралов от рациональных функций.
- 9.Понятие интегральной суммы. Геометрический смысл.
- 10.Понятие определенного интеграла.
- 11.Основные свойства определенного интеграла.
- 12.Интеграл с переменным верхним пределом.
- 13.Формула Ньютона-Лейбница.
- Замена переменных в определенном интеграле.
- Формула интегрирования по частям в определенном интеграле.
- Несобственные интегралы с бесконечными пределами.
- 17.Несобственные интегралы от неограниченных функций.
- 18.Метрические, линейные, нормированные, евклидовы пространства.
- 19.Понятие функции n переменный. Предел функции n переменных.
- 20.Непрерывность функции n переменных.
- 21.Непрерывность сложной функции.
- 22.Частные производные функции n переменных.
- 23.Дифференцируемость функции n переменных.
- 24.Дифференциал функции n переменных.
- 25.Дифференцирование сложной функции.
- 26.Производная по направлению. Градиент.
- 27.Частные производные высших порядков функции n переменных.
- 28.Дифференциал второго порядка функции n переменных.
- 29.Квадратичная форма. Критерий Сильвестра.
- 30.Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
- Необходимое условие локального экстремума
- 31.Достаточные условия локального экстремума функции n переменных.
- 32.Неявные функции.
- 33.Условный экстремум
- 34.Метод множителей Лагранжа.
- 35.Определение числового ряда, частичной суммы, сходящегося ряда.
- 36Свойства сходящихся числовых рядов.
- 38.Необходимое и достаточное условие сходимости ряда с неотрицательными членами.
- 39.Признак сравнения.
- 40.Признак Даламбера.
- 42.Знакочередующийся ряд. Признак Лейбница.
- 43.Знакопеременные ряды, их сходимость.
- 44.Степенные ряды.
- 45.Теорема Абеля.
- 46.Теорема об интервале сходимости степенного ряда.
- 47.Теорема о радиусе сходимости степенного ряда