Квадратурная формула Гаусса
Входные параметры: a,b – интервал интегрирования; fun – вид функции.
Выходные параметры: d – погрешность интегрирования; res – значение интеграла функции.
Схема алгоритма показана на рисунке 4.
Пример. Вычислить приближенное значение определенного интеграла с точностью 0,01
Текст программы:
Procedure Kvadratur(fun:string;a,b:real;var res,d:real);
var c,h,h1,c1,x1,x2,x3,f1,f3,s1,s2:real;
n:integer;
begin
c:=sqrt(3/5);
h1:=(b-a)/2;
c1:=c*h1;
x2:=(b+a)/2;
f1:=Execute(fun,x2-c1);
f3:=Execute(fun,x2+c1);
s1:=h1*(5*f1+8*Execute(fun,x2)+5*f3)/9;
n:=2;
repeat
h:=(b-a)/n; h1:=h/2; c1:=c*h1;
x2:=a+h1; x1:=x2-c1; x3:=x2+c1; s2:=0;
for i:=1 to n do
begin
s2:=s2+5*Execute(fun,x1)+8*Execute(fun,x2)+5*Execute(fun,x3);
x1:=x1+h; x2:=x2+h; x3:=x3+h;
end;
s2:=s2*h1/9; d:=abs(s1-s2)/63; s1:=s2; n:=2*n;
until d<h;
res:=s2;
end;
Вычисления по программе привели к следующим результатам:
Результат: - 0.4863854
Погрешность вычисления:0,007
Рисунок 4 - Схема алгоритма квадратурной формулы Гаусса
Варианты заданий для решения задач численного интегрирования и дифференцирования приведены в таблице 2.
Дифференцирование с помощью сплайнов
Входные параметры: a,b – интервал дифференцирования; x – точка дифференцирования; n – число точек дифференцирования; fun – вид функции.
Выходные параметры: y_1,y_2 – значения первой и второй производной в точке x соответственно.
Схема алгоритма показана на рисунке 5.
Пример. Продифференцировать функцию , количество точек разбиения 5, значение точки х=1.
Текст программы:
procedure Spl_Integr(fun:string;a,b,x:real;n:integer;var y_1,y_2:real);
var h,h1,h2,aa:real;
y:array of real;
begin
h:=(b-a)/n;
SetLength(y,n-1);
aa:=a;
for i:=0 to length(y)-1 do
begin
y[i]:=execute(fun,aa); form3.Memo1.Lines.Add(floattostr(y[i]));
aa:=aa+h;
end;
i:=trunc((x-a)/h+h/2);
h1:=2*h; h2:=h*h; if i=0 then
begin
y_1:=(-3*y[0]+4*y[1]-y[2])/h1; y_2:=(2*y[0]-5*y[1]+4*y[2]-y[3])/h2;
end;
if (i>0)and(i<n) then begin
y_1:=(-y[i-1]+y[i+1])/h1; y_2:=(y[i-1]-2*y[i]+y[i+1])/h2; end;
if i=n then
begin
y_1:=(y[n-2]-4*y[n-1]+3*y[n])/h1; y_2:=(-y[n-3]+4*y[n-2]-5*y[n-1]+2*y[n])/h2;
end;
end;
Вычисления по программе привели к следующим результатам:
Первая производная:3,808
Вторая производная:10,00
Рисунок 5 - Схема алгоритма дифференцирования с помощью сплайнов
Варианты заданий приведены в таблице 2.
- Общие сведения Сведения об эумк
- Методические рекомендации по изучению дисциплины
- Рабочая учебная программа Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»
- Пояснительная записка
- Содержание дисциплины
- 1. Название тем лекционных занятий, их содержание, объем в часах Наименование тем, их содержание
- 2. Перечень тем ипр
- Перечень тем контрольных работ
- 4. Литература
- 4.1 Основная
- 4.2 Дополнительная
- 5. Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 6. Учебно-методическая карта дисциплины содержание дисциплины
- Теоретический раздел Вступление
- Дискретная и вычислительная математика
- Часть 1. Вычислительная математика Математическое моделирование и вычислительный эксперимент
- 1 Решение систем линейных алгебраических уравнений
- 1.1 Точные методы
- 1.1.1 Метод Гаусса
- 1.1.2 Связь метода Гаусса с разложением матрицы на множители. Теорема об lu разложении
- Теорема об lu разложении
- 1.1.3 Метод Гаусса с выбором главного элемента
- 1.1.4 Метод Холецкого (метод квадратных корней)
- 1.2 Итерационные методы решений систем алгебраических уравнений
- 1.2.1 Метод Якоби (простых итераций)
- 1.2.2 Метод Зейделя
- 1.2.3 Матричная запись методов Якоби и Зейделя
- 1.2.4 Метод Ричардсона
- 1.2.5 Метод верхней релаксации (обобщённый метод Зейделя)
- 1.2.6 Сходимость итерационных методов
- 2 Плохо обусловленные системы линейных алгебраических уравнений
- 2.1 Метод регуляризации для решения плохо обусловленных систем
- 2.2 Метод вращения (Гивенса)
- 3 Решение нелинейных уравнений
- 3.1 Метод простых итераций
- 3.1.1 Условия сходимости метода
- 3.1.2 Оценка погрешности
- 3.2 Метод Ньютона
- 3.2.1 Сходимость метода
- 4 Решение проблемы собственных значений
- 4.1 Прямые методы
- 4.1.1 Метод Леверрье
- 4.1.2 Усовершенствованный метод Фадеева
- 4.1.3 Метод Данилевского
- 4.1.4 Метод итераций определения первого собственного числа матрицы
- 5 Задача приближения функции
- 5.1 Интерполяционный многочлен Лагранжа
- 5.1.1 Оценка погрешности интерполяционного многочлена
- 5.2 Интерполяционные полиномы Ньютона
- 5.2.1 Интерполяционный многочлен Ньютона для равноотстоящих узлов
- 5.2.2 Вторая интерполяционная формула Ньютона
- 5.3 Интерполирование сплайнами
- 5.3.1 Построение кубического сплайна
- 5.3.2 Сходимость процесса интерполирования кубическими сплайнами
- 5.4 Аппроксимация функций методом наименьших квадратов
- 6 Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений и систем дифференциальных уравнений
- 6.1 Семейство одношаговых методов решения задачи Коши
- 6.1.1 Метод Эйлера (частный случай метода Рунге-Кутта)
- 6.1.2 Методы Рунге-Кутта
- 6.2 Многошаговые разностные методы решения задачи Коши для обыкновенных дифференциальных уравнений
- 6.2.1 Задача подбора числовых коэффициентов aк , bк
- 6.2.2 Устойчивость и сходимость многошаговых разностных методов
- 6.2.3 Примеры m-шаговых разностных методов Адамса для различных m
- 6.3 Численное интегрирование жестких систем обыкновенных дифференциальных уравнений
- 6.3.1 Понятие жесткой системы оду
- 6.3.2 Некоторые сведения о других методах решения жестких систем
- 6.3.2.1 Методы Гира
- 6.3.2.2 Метод Ракитского(матричной экспоненты) решения систем оду
- 6.4 Краевые задачи для обыкновенных дифференциальных уравнений
- 6.5 Решение линейной краевой задачи
- 6.6 Решение двухточечной краевой задачи для линейного уравнения второго порядка сведением к задаче Коши
- 6.7 Методы численного решения двухточечной краевой задачи для линейного уравнения второго порядка
- 6.7.1 Метод конечных разностей
- 6.7.2 Метод прогонки (одна из модификаций метода Гаусса)
- 7 Приближенное решение дифференциальных уравнений в частных производных
- 7.1 Метод сеток для решения смешанной задачи для уравнения параболического типа (уравнения теплопроводности)
- 7.2 Решение задачи Дирихле для уравнения Лапласа методом сеток
- 7.3 Решение смешанной задачи для уравнения гиперболического типа методом сеток
- Часть 2. Дискретная математика
- 1. Основные Элементы теории множеств
- 1.1 Элементы и множества
- 1.2 Задание множеств. Парадокс Рассела
- 1.3 Операции над множествами
- 1.4 Булеан множества
- 1.5 Представление множеств в эвм
- Разбиения и покрытия
- 2 Отношения и функции
- 2.1 Прямое произведение множеств
- Элементы комбинаторики
- Теория конфигураций и теория перечисления
- Размещения
- Сочетания
- 3.1 Перестановки и подстановки
- 4 Элементы математической логики
- 5 Конечные графы и сети Основные определения
- 5.1 Матрицы графов
- Матрица смежности Списки инцидентности
- 5.2 Достижимость и связность
- 5.3 Эйлеровы и гамильтоновы графы
- 5.4 Деревья и циклы
- 5.5 Алгоритмы поиска пути
- Двунаправленный поиск
- Поиск по первому наилучшему совпадению
- Алгоритм Дейкстры
- АлгоритмА*
- Остовное дерево
- Матрица Кирхгофа
- 5.6 Конечные автоматы
- 5.6 Элементы топологии
- 5.7 Метрическое пространство
- Указания по выбору варианта
- Контрольная работа № 2 Общие сведения
- Квадратурная формула Гаусса
- Указания по выбору варианта
- Индивидуальные практические работы Индивидуальная практическая работа № 1 Общие сведения
- Интерполяционный полином Лагранжа
- Аппроксимация функций с помощью кубического сплайна
- Приближение формулами Ньютона
- Аппроксимация функций методом наименьших квадратов
- Индивидуальная практическая работа № 2