1.3 Операции над множествами
Множество A называется подмножеством множества B, если любой элемент множества A принадлежит множеству B. При этом пишут AÌB, где "Ì" есть знак вложения подмножества. Из определения следует, что для любого множества A справедливы, как минимум, два вложения A Ì A и A Ì U.
Если A Ì B и A ≠ B, A ≠ Ø, то A называется собственным подмножеством множества B. В этом случае B содержит хотя бы один элемент, не принадлежащий A.
В теории множеств, по определению, полагают, что пустое множество является подмножеством любого множества: A.
Пустое множество и само множество A называются несобственными подмножествами множества A.
При графическом изображении множеств удобно использовать диаграммы Эйлера–Вейна , на которых универсальное множество обычно представляют в виде прямоугольника, а остальные множества в виде овалов, заключенных внутри этого прямоугольника (рис 1.1).
Определение. Объединением множеств A и B (обозначение A B) называется множество элементов x таких, что x принадлежит хотя бы одному из двух множеств A или B (рис 1.2). Символически это можно записать следующим образом:
A B = {xx A или x B}.
Определение. Пересечением множеств A и B (обозначение A B) называется множество, состоящее из элементов x, которые принадлежат и множеству A и множеству B (рис. 1.3):
A B = {xx A и x B}.
Определение. Разностью множеств A и B называется множество всех тех элементов множества A, которые не принадлежат множеству B (рис. 1.4):
A\B = {xx A и x B}.
Определение. Симметрической разностью множеств A и B называется множество A B = ( A\B )( B\A ) (рис. 1.5).
Определение. Абсолютным дополнением множества A называется множество всех элементов, не принадлежащих A, т.е. множество A = U\A, где U - универсальное множество (рис. 1.6).
В дальнейшем вместо термина "абсолютное дополнение" мы будем употреблять термин "дополнение".
Пример. Если U = { a, b, c, d, e, f, g, h }, A = { c, d, e }, B = { a, c, e, f, h }, то
| |||
|
Свойства операций
Для любых множеств A,B,C выполняются следующие тождества:
A B = B A, A B = B A
(коммутативность объединения и пересечения);
A ( B C ) = ( A B ) C, A ( B C ) = ( A B ) C
(ассоциативность объединения и пересечения);
A ( B C ) = ( A B ) ( AC ),
A ( B C ) = ( A B ) ( AC )
(дистрибутивность;
A A = A, A A = A
(идемпотентность;
A U = U, A U = A, A = A, A = ,
A A = U, A A =
(свойства универсального и пустого множеств);
-
-
A
= A
(закон двойного отрицания);
-
A B
=
-
A
-
B
,
A B
=
-
A
-
B
(законы де Моргана).
- Общие сведения Сведения об эумк
- Методические рекомендации по изучению дисциплины
- Рабочая учебная программа Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»
- Пояснительная записка
- Содержание дисциплины
- 1. Название тем лекционных занятий, их содержание, объем в часах Наименование тем, их содержание
- 2. Перечень тем ипр
- Перечень тем контрольных работ
- 4. Литература
- 4.1 Основная
- 4.2 Дополнительная
- 5. Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 6. Учебно-методическая карта дисциплины содержание дисциплины
- Теоретический раздел Вступление
- Дискретная и вычислительная математика
- Часть 1. Вычислительная математика Математическое моделирование и вычислительный эксперимент
- 1 Решение систем линейных алгебраических уравнений
- 1.1 Точные методы
- 1.1.1 Метод Гаусса
- 1.1.2 Связь метода Гаусса с разложением матрицы на множители. Теорема об lu разложении
- Теорема об lu разложении
- 1.1.3 Метод Гаусса с выбором главного элемента
- 1.1.4 Метод Холецкого (метод квадратных корней)
- 1.2 Итерационные методы решений систем алгебраических уравнений
- 1.2.1 Метод Якоби (простых итераций)
- 1.2.2 Метод Зейделя
- 1.2.3 Матричная запись методов Якоби и Зейделя
- 1.2.4 Метод Ричардсона
- 1.2.5 Метод верхней релаксации (обобщённый метод Зейделя)
- 1.2.6 Сходимость итерационных методов
- 2 Плохо обусловленные системы линейных алгебраических уравнений
- 2.1 Метод регуляризации для решения плохо обусловленных систем
- 2.2 Метод вращения (Гивенса)
- 3 Решение нелинейных уравнений
- 3.1 Метод простых итераций
- 3.1.1 Условия сходимости метода
- 3.1.2 Оценка погрешности
- 3.2 Метод Ньютона
- 3.2.1 Сходимость метода
- 4 Решение проблемы собственных значений
- 4.1 Прямые методы
- 4.1.1 Метод Леверрье
- 4.1.2 Усовершенствованный метод Фадеева
- 4.1.3 Метод Данилевского
- 4.1.4 Метод итераций определения первого собственного числа матрицы
- 5 Задача приближения функции
- 5.1 Интерполяционный многочлен Лагранжа
- 5.1.1 Оценка погрешности интерполяционного многочлена
- 5.2 Интерполяционные полиномы Ньютона
- 5.2.1 Интерполяционный многочлен Ньютона для равноотстоящих узлов
- 5.2.2 Вторая интерполяционная формула Ньютона
- 5.3 Интерполирование сплайнами
- 5.3.1 Построение кубического сплайна
- 5.3.2 Сходимость процесса интерполирования кубическими сплайнами
- 5.4 Аппроксимация функций методом наименьших квадратов
- 6 Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений и систем дифференциальных уравнений
- 6.1 Семейство одношаговых методов решения задачи Коши
- 6.1.1 Метод Эйлера (частный случай метода Рунге-Кутта)
- 6.1.2 Методы Рунге-Кутта
- 6.2 Многошаговые разностные методы решения задачи Коши для обыкновенных дифференциальных уравнений
- 6.2.1 Задача подбора числовых коэффициентов aк , bк
- 6.2.2 Устойчивость и сходимость многошаговых разностных методов
- 6.2.3 Примеры m-шаговых разностных методов Адамса для различных m
- 6.3 Численное интегрирование жестких систем обыкновенных дифференциальных уравнений
- 6.3.1 Понятие жесткой системы оду
- 6.3.2 Некоторые сведения о других методах решения жестких систем
- 6.3.2.1 Методы Гира
- 6.3.2.2 Метод Ракитского(матричной экспоненты) решения систем оду
- 6.4 Краевые задачи для обыкновенных дифференциальных уравнений
- 6.5 Решение линейной краевой задачи
- 6.6 Решение двухточечной краевой задачи для линейного уравнения второго порядка сведением к задаче Коши
- 6.7 Методы численного решения двухточечной краевой задачи для линейного уравнения второго порядка
- 6.7.1 Метод конечных разностей
- 6.7.2 Метод прогонки (одна из модификаций метода Гаусса)
- 7 Приближенное решение дифференциальных уравнений в частных производных
- 7.1 Метод сеток для решения смешанной задачи для уравнения параболического типа (уравнения теплопроводности)
- 7.2 Решение задачи Дирихле для уравнения Лапласа методом сеток
- 7.3 Решение смешанной задачи для уравнения гиперболического типа методом сеток
- Часть 2. Дискретная математика
- 1. Основные Элементы теории множеств
- 1.1 Элементы и множества
- 1.2 Задание множеств. Парадокс Рассела
- 1.3 Операции над множествами
- 1.4 Булеан множества
- 1.5 Представление множеств в эвм
- Разбиения и покрытия
- 2 Отношения и функции
- 2.1 Прямое произведение множеств
- Элементы комбинаторики
- Теория конфигураций и теория перечисления
- Размещения
- Сочетания
- 3.1 Перестановки и подстановки
- 4 Элементы математической логики
- 5 Конечные графы и сети Основные определения
- 5.1 Матрицы графов
- Матрица смежности Списки инцидентности
- 5.2 Достижимость и связность
- 5.3 Эйлеровы и гамильтоновы графы
- 5.4 Деревья и циклы
- 5.5 Алгоритмы поиска пути
- Двунаправленный поиск
- Поиск по первому наилучшему совпадению
- Алгоритм Дейкстры
- АлгоритмА*
- Остовное дерево
- Матрица Кирхгофа
- 5.6 Конечные автоматы
- 5.6 Элементы топологии
- 5.7 Метрическое пространство
- Указания по выбору варианта
- Контрольная работа № 2 Общие сведения
- Квадратурная формула Гаусса
- Указания по выбору варианта
- Индивидуальные практические работы Индивидуальная практическая работа № 1 Общие сведения
- Интерполяционный полином Лагранжа
- Аппроксимация функций с помощью кубического сплайна
- Приближение формулами Ньютона
- Аппроксимация функций методом наименьших квадратов
- Индивидуальная практическая работа № 2