13.Формула Ньютона-Лейбница.
Формула Ньютона- Лейбница
Пусть функция f(x) непрерывна на отрезке [a,b] и имеет на этом отрезке семейство первообразных, одной из которых является Ф(х)= .
[Т] Если функция f(x) непрерывна на [a,b], то верно следующее равенство . Т.е. определенный интеграл от непрерывной функции равн разности значений любой ее первообразной на верхнем и нижнем пределах интегрирования соответственно. Она называется формулой Ньютона-Лейбница.
Доказательство: Пусть F(x) другая первообразная для функции f(x) на том же отрезке, которая отличается от Ф(х) не более чем на константу, т.е. Ф(х)=F(x)+C, =F(x)+C, где С- некоторое число, axb. Подставляя в это равенство значение х=а и используя свойство 1, имеем: =0, получим: 0= , F(a)+C, C=-F(a)
Т.е. для любого х[a,b] Полагая здесь х=b получим искомую формулу.
-
Содержание
- Понятие первообразной. Основные свойства (лемма, теорема)
- Понятие неопределенного интеграла.
- Методы замены переменной
- 4.Метод интегрирования по частям.
- 5.Основные типы интегралов берущихся по частям.
- 6.Теорема о представлении рациональной функции в виде суммы элементарных дробей с неопределенными коэффициентами.
- 7.Метод неопределенных коэффициентов.
- 8.Основные типы интегралов от рациональных функций.
- 9.Понятие интегральной суммы. Геометрический смысл.
- 10.Понятие определенного интеграла.
- 11.Основные свойства определенного интеграла.
- 12.Интеграл с переменным верхним пределом.
- 13.Формула Ньютона-Лейбница.
- Замена переменных в определенном интеграле.
- Формула интегрирования по частям в определенном интеграле.
- Несобственные интегралы с бесконечными пределами.
- 17.Несобственные интегралы от неограниченных функций.
- 18.Метрические, линейные, нормированные, евклидовы пространства.
- 19.Понятие функции n переменный. Предел функции n переменных.
- 20.Непрерывность функции n переменных.
- 21.Непрерывность сложной функции.
- 22.Частные производные функции n переменных.
- 23.Дифференцируемость функции n переменных.
- 24.Дифференциал функции n переменных.
- 25.Дифференцирование сложной функции.
- 26.Производная по направлению. Градиент.
- 27.Частные производные высших порядков функции n переменных.
- 28.Дифференциал второго порядка функции n переменных.
- 29.Квадратичная форма. Критерий Сильвестра.
- 30.Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
- Необходимое условие локального экстремума
- 31.Достаточные условия локального экстремума функции n переменных.
- 32.Неявные функции.
- 33.Условный экстремум
- 34.Метод множителей Лагранжа.
- 35.Определение числового ряда, частичной суммы, сходящегося ряда.
- 36Свойства сходящихся числовых рядов.
- 38.Необходимое и достаточное условие сходимости ряда с неотрицательными членами.
- 39.Признак сравнения.
- 40.Признак Даламбера.
- 42.Знакочередующийся ряд. Признак Лейбница.
- 43.Знакопеременные ряды, их сходимость.
- 44.Степенные ряды.
- 45.Теорема Абеля.
- 46.Теорема об интервале сходимости степенного ряда.
- 47.Теорема о радиусе сходимости степенного ряда