12.Интеграл с переменным верхним пределом.
Интеграл с переменным верхним пределом.
x [a,b]
Это интеграл у которого нижний предел а=const а верхний предел х переменный. Величина этого интеграла представляет собой функцию верхнего предела х
(х)= , где х принадлежит сегменту [a,b] и ф(х)= интеграл с переменным верхним пределом. Геометрически интеграл с переменным верхним пределом представляет собой S криволинейной трапеции.
[Т] Производная интеграла от непрерывной функции по переменному верхнему пределу существует и равна значению подынтегральной функции в точке, равной верхнему пределу, т.е. Ф’(x)=( )’x=f(x)
Ф’(x)=( )’=f(x)
Ф’(x)=
Доказательство:
1 вариант (учебники): возьмем любое значение x[a,b] и придадим ему приращение х0 такое, чтобы х+ х[a,b], т.е. ax+ хb. Тогда функция Ф(х) по определению получит новое значение: Ф(х+ х)=
Согласно второму свойству определенного интеграла, имеем: Ф(х+ х)= + =Ф(х)+ Ф=Ф(х+Х)-Ф(х), т.к. f(x) непрерывна на [a,b] то существует число c[x, x+x]:[ =f(c)x]. Если устремить приращение аргумента к нулю, получим : =f(x) или Ф’(х)=f(x), ч т.д. Можно записать, что f(x)dx=Ф(x)+C= +C
2 вариант (Деревенских) Ф’(х)= Ф(х)= - = + - = =f(c)* x. По теореме о среднем существует c[x, x+x]
Ф’(x)= Отсюда следует, что Ф’(x)=f(x)
- Понятие первообразной. Основные свойства (лемма, теорема)
- Понятие неопределенного интеграла.
- Методы замены переменной
- 4.Метод интегрирования по частям.
- 5.Основные типы интегралов берущихся по частям.
- 6.Теорема о представлении рациональной функции в виде суммы элементарных дробей с неопределенными коэффициентами.
- 7.Метод неопределенных коэффициентов.
- 8.Основные типы интегралов от рациональных функций.
- 9.Понятие интегральной суммы. Геометрический смысл.
- 10.Понятие определенного интеграла.
- 11.Основные свойства определенного интеграла.
- 12.Интеграл с переменным верхним пределом.
- 13.Формула Ньютона-Лейбница.
- Замена переменных в определенном интеграле.
- Формула интегрирования по частям в определенном интеграле.
- Несобственные интегралы с бесконечными пределами.
- 17.Несобственные интегралы от неограниченных функций.
- 18.Метрические, линейные, нормированные, евклидовы пространства.
- 19.Понятие функции n переменный. Предел функции n переменных.
- 20.Непрерывность функции n переменных.
- 21.Непрерывность сложной функции.
- 22.Частные производные функции n переменных.
- 23.Дифференцируемость функции n переменных.
- 24.Дифференциал функции n переменных.
- 25.Дифференцирование сложной функции.
- 26.Производная по направлению. Градиент.
- 27.Частные производные высших порядков функции n переменных.
- 28.Дифференциал второго порядка функции n переменных.
- 29.Квадратичная форма. Критерий Сильвестра.
- 30.Локальный экстремум функции n переменных. Необходимое условие локального экстремума.
- Необходимое условие локального экстремума
- 31.Достаточные условия локального экстремума функции n переменных.
- 32.Неявные функции.
- 33.Условный экстремум
- 34.Метод множителей Лагранжа.
- 35.Определение числового ряда, частичной суммы, сходящегося ряда.
- 36Свойства сходящихся числовых рядов.
- 38.Необходимое и достаточное условие сходимости ряда с неотрицательными членами.
- 39.Признак сравнения.
- 40.Признак Даламбера.
- 42.Знакочередующийся ряд. Признак Лейбница.
- 43.Знакопеременные ряды, их сходимость.
- 44.Степенные ряды.
- 45.Теорема Абеля.
- 46.Теорема об интервале сходимости степенного ряда.
- 47.Теорема о радиусе сходимости степенного ряда