Обратная матрица. Элементарные матрицы и их применение. Обратная матрица
Def. Матрица А-1 называется обратной к матрице А, если А-1А=А А-1=Е.
Def. Матрица А называется невырожденной, если , в противном случае она называется вырожденной.
Th.6.1 | Любая невырожденная матрица имеет обратную, которая находится по формуле: (6.1) где - алгебраические дополнения к элементам матрицы |
Доказательство.
Докажем, что вырожденная матрица не имеет обратной.
Пусть и . Тогда с одной стороны , а с другой стороны . Противоречие. Значит, для вырожденной матрицы не существует обратной.
Проверим, что матрица заданная формулой (5.1) действительно является обратной к А. Для этого убедимся, что А-1А=А А-1=Е.
Найдем элемент матрицы В:
.
Если то и Если же то и Таким образом,
Аналогично доказываем, что
Свойства обратной матрицы:
|
|
Доказательство.
Свойство 1 вытекает непосредственно из определения.
Докажем свойство 2. По определению обратной матрицы .
. Поскольку то .
Докажем свойство 3.
.
.
По определению – обратная матрица для матрицы , т.е. .
Докажем свойство 4.
и Значит, по определению матрица – обратная матрица для , т.е.
- И.Н. Реутова конспект лекций по алгебре и геометрии
- Часть 1.
- Содержание
- Системы линейных уравнений и их матрицы. Сведение системы линейных уравнений к ступенчатому виду (метод гаусса) Системы линейных уравнений и их матрицы.
- Метод Гаусса
- Перестановки и подстановки. Определитель n-го порядка
- Перестановки
- Подстановки
- Определитель n-го порядка
- Свойства определителей. Свойства определителей
- Миноры и алгебраические дополнения. Вычисление определителей. Правило крамера. Миноры и алгебраические дополнения
- Вычисление определителей
- 1.Метод Гаусса.
- 2. На основании теоремы Лапласа.
- 3. Метод рекуррентных (возвратных) соотношений.
- Правило Крамера.
- Матрицы. Операции над матрицами. Линейные преобразования и матрицы
- Линейные операции над матрицами
- Нелинейные операции над матрицами
- Обратная матрица. Элементарные матрицы и их применение. Обратная матрица
- Элементарные матрицы и их применение
- Метод Жордана-Гаусса нахождения обратной матрицы
- Векторное n-мерное пространство. Линейная зависимость векторов. Ранг матрицы. Общая теория систем линейных уравнений. Векторное n-мерное пространство
- Линейная зависимость векторов
- Ранг матрицы
- Системы линейных уравнений
- Системы линейных однородных уравнений
- Некоторые общие понятия алгебры. Поле комплексных чисел. Геометрическая интерпретация комплексных чисел. Группы. Кольца. Поля
- Поле комплексных чисел
- Алгебраическая форма записи комплексных чисел
- Геометрическая интерпретация комплексных чисел
- Извлечение корня n-ой степени из комплексного числа
- Основные понятия векторной алгебры. Линейные операции над векторами и их свойства. Линейно зависимые (независимые) системы векторов. Базис. Координаты вектора. Основные понятия векторной алгебры
- Линейные операции над векторами и их свойства
- Линейная зависимость (независимость) векторов. Базис, координаты вектора
- Декартова система координат. Координаты вектора
- Проекция вектора на ось. Геометрический смысл декартовой системы координат. Скалярное произведение векторов. Проекция вектора на ось
- Геометрический смысл декартовой прямоугольной системы координат
- Скалярное произведение векторов
- Векторное, смешанное и двойное векторное произведение векторов Векторное произведение векторов
- Смешанное произведение векторов
- Двойное векторное произведение векторов
- Понятие об уравнении линии. Прямая на плоскости. Понятие об уравнении линии
- Уравнение прямой на плоскости
- Уравнение прямой с угловым коэффициентом
- Другие виды уравнения прямой на плоскости
- Взаимное расположение прямых на плоскости
- Расстояние от точки до прямой
- Уравнение пучка прямых
- Плоскость в пространстве Уравнение плоскости в пространстве
- Взаимное расположение плоскостей в пространстве.
- Расстояние от точки до плоскости
- Пучок плоскостей
- Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве
- Основные задачи на прямую в пространстве
- 1. Угол между двумя прямыми в пространстве.
- 3. Расстояние от точки до прямой в пространстве.
- 5. Расстояние между двумя скрещивающимися прямыми.
- Взаимное расположение прямой и плоскости в пространстве
- 1. Пересечение прямой и плоскости.
- Кривые второго порядка
- Гипербола
- Кривые второго порядка (продолжение) Директрисы эллипса и гиперболы
- Парабола
- Кривые второго порядка с осями симметрии параллельными координатным осям
- Поверхности второго порядка
- Эллипсоид
- Однополостной гиперболоид
- Двухполостной гиперболоид
- Эллиптический параболоид
- Гиперболический параболоид
- Прямолинейные образующие поверхностей второго порядка
- Рекомендованная литература