Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве
Уравнение прямой в пространстве
Положение прямой в пространстве однозначно определяется точкой и вектором который называется направляющим вектором прямой Пусть радиус-вектор точки , а радиус-вектор текущей точки |
Рис. 15.1 |
прямой (рис. 15.1). тогда и только тогда, когда , т.е. или:
(15.1)
Уравнение (15.1) называется векторным уравнением прямой в пространстве. В координатной форме уравнение (15.1) записывается в виде:
(15.2)
Уравнения (15.2) называют параметрическими уравнениями прямой в пространстве.
Условие можно записать в координатной форме:
(15.3)
Уравнения (15.3) называют еще каноническими уравнениями прямой.
Замечание. Если то уравнения (15.3) надо понимать в смысле (15.2)
Прямая также однозначно определяется двумя точками и (рис. 15.2). В этом случае в качестве направляющего вектора можно взять вектор
|
Рис. 15.2 |
Тогда уравнения (15.2) принимают вид:
(15.4)
Уравнения (15.4) называют уравнениями прямой, проходящей через две точки.
Прямая в пространстве может быть задана как линия пересечения плоскостей. Пусть плоскости и заданы соответственно уравнениями и Тогда их прямая пересечения может быть задана следующим образом:
(15.5)
Очевидно, для того, чтобы система (15.5) задавала прямую необходимо и достаточно, чтобы и не были коллинеарны. В этом случае направляющий вектор прямой определяется по формуле:
(15.6)
N. Составить канонические уравнения прямой
Решение.
Найдем какую-нибудь точку на данной прямой. Для этого положив получим систему:
Отсюда Таким образом, точка - точка прямой.
Найдем направляющий вектор прямой по формуле (15.6).
Тогда:
Составим канонические уравнения прямой, воспользовавшись формулой (15.3).
Ответ.
Замечание. Для составления канонических уравнений прямой можно поступить иначе. Можно отыскать две какие-нибудь точки данной прямой и воспользоваться уравнениями прямой, проходящей через две точки (15.4).
- И.Н. Реутова конспект лекций по алгебре и геометрии
- Часть 1.
- Содержание
- Системы линейных уравнений и их матрицы. Сведение системы линейных уравнений к ступенчатому виду (метод гаусса) Системы линейных уравнений и их матрицы.
- Метод Гаусса
- Перестановки и подстановки. Определитель n-го порядка
- Перестановки
- Подстановки
- Определитель n-го порядка
- Свойства определителей. Свойства определителей
- Миноры и алгебраические дополнения. Вычисление определителей. Правило крамера. Миноры и алгебраические дополнения
- Вычисление определителей
- 1.Метод Гаусса.
- 2. На основании теоремы Лапласа.
- 3. Метод рекуррентных (возвратных) соотношений.
- Правило Крамера.
- Матрицы. Операции над матрицами. Линейные преобразования и матрицы
- Линейные операции над матрицами
- Нелинейные операции над матрицами
- Обратная матрица. Элементарные матрицы и их применение. Обратная матрица
- Элементарные матрицы и их применение
- Метод Жордана-Гаусса нахождения обратной матрицы
- Векторное n-мерное пространство. Линейная зависимость векторов. Ранг матрицы. Общая теория систем линейных уравнений. Векторное n-мерное пространство
- Линейная зависимость векторов
- Ранг матрицы
- Системы линейных уравнений
- Системы линейных однородных уравнений
- Некоторые общие понятия алгебры. Поле комплексных чисел. Геометрическая интерпретация комплексных чисел. Группы. Кольца. Поля
- Поле комплексных чисел
- Алгебраическая форма записи комплексных чисел
- Геометрическая интерпретация комплексных чисел
- Извлечение корня n-ой степени из комплексного числа
- Основные понятия векторной алгебры. Линейные операции над векторами и их свойства. Линейно зависимые (независимые) системы векторов. Базис. Координаты вектора. Основные понятия векторной алгебры
- Линейные операции над векторами и их свойства
- Линейная зависимость (независимость) векторов. Базис, координаты вектора
- Декартова система координат. Координаты вектора
- Проекция вектора на ось. Геометрический смысл декартовой системы координат. Скалярное произведение векторов. Проекция вектора на ось
- Геометрический смысл декартовой прямоугольной системы координат
- Скалярное произведение векторов
- Векторное, смешанное и двойное векторное произведение векторов Векторное произведение векторов
- Смешанное произведение векторов
- Двойное векторное произведение векторов
- Понятие об уравнении линии. Прямая на плоскости. Понятие об уравнении линии
- Уравнение прямой на плоскости
- Уравнение прямой с угловым коэффициентом
- Другие виды уравнения прямой на плоскости
- Взаимное расположение прямых на плоскости
- Расстояние от точки до прямой
- Уравнение пучка прямых
- Плоскость в пространстве Уравнение плоскости в пространстве
- Взаимное расположение плоскостей в пространстве.
- Расстояние от точки до плоскости
- Пучок плоскостей
- Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве
- Основные задачи на прямую в пространстве
- 1. Угол между двумя прямыми в пространстве.
- 3. Расстояние от точки до прямой в пространстве.
- 5. Расстояние между двумя скрещивающимися прямыми.
- Взаимное расположение прямой и плоскости в пространстве
- 1. Пересечение прямой и плоскости.
- Кривые второго порядка
- Гипербола
- Кривые второго порядка (продолжение) Директрисы эллипса и гиперболы
- Парабола
- Кривые второго порядка с осями симметрии параллельными координатным осям
- Поверхности второго порядка
- Эллипсоид
- Однополостной гиперболоид
- Двухполостной гиперболоид
- Эллиптический параболоид
- Гиперболический параболоид
- Прямолинейные образующие поверхностей второго порядка
- Рекомендованная литература