logo search
lec_alg_i_geom

Однополостной гиперболоид

Def. Однополостным гиперболоидом называется поверхность, каноническое уравнение которой имеет вид:

(18.4)

Исследуем форму однополостного гиперболоида по той же схеме, по которой исследовали форму эллипсоида.

1. Из уравнения (18.4) следует, что оси коодинат являются осями симметрии однополостного гиперболоида, координатные плоскости – плоскостями симметрии, а начало отсчета – центром симметрии. Ось поверхность пересекает в точках с координатами ось в точках с координатами точек пересечения с осью нет.

2. Линия пересечения однополостного гиперболоида с плоскостью имеет уравнение:

Данная линия представляет собой эллипс с полуосями и

3. Рассмотрим пересечение однополостного гиперболоида и плоскости Линия пересечения задается уравнением

или

(18.5)

т.е представляет собой эллипс с полуосями и Заметим, что полуоси неограниченно увеличиваются с увеличением Таким образом, гиперболоид (18.4) представляет собой поверхность, подобную трубке, неограниченно расширяющейся в положительном и отрицательном направлениях по оси

4. Линией пересечения однополостного гиперболоида с плоскостью будет гипебола

с действительной полуосью и мнимой полуосью А линией пересечения гиперболоида с плоскостью также является гипербола

с действительной полуосью и мнимой полуосью

Таким образом, однополостной гиперболоид (18.4) имеет вид, изображенный на рис. 18.2.

Def. Если линиями пересечения однополостного гиперболоида (18.4) с плоскостями являются не эллипсы, а окружности, то он

Рис. 18.2

называется однополостным гиперболоидом вращения.

Def. Числа называют полуосями однополостного гиперболоида.