Билет №18. Математическое ожидание его свойства. Вероятностный смысл
Математическим ожиданием дискретной СВ называется сумма произведений возможных значений Xi, которые приобретает величина X, на соответствующие им вероятности Pi.
Пусть задан ряд распределения дискретной СВ.
xi | x1 | x2 | … | xi | … | xn |
pi | p1 | p2 | … | pi | … | pn |
Мат. Ожидание дискретной СВ тогда будет равно: M(X) =x1p1+x2p2+…+xnpn=
Матожидание часто называют центром распределения. С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.
Свойства математического ожидания.
Математическое ожидание постоянной величины равно самой постоянной.
Постоянный множитель можно выносить за знак математического ожидания.
Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.
Это свойство справедливо для произвольного числа случайных величин.
Следствие1: Матожидание отклонение СВ от ее матожидания =0 M(X-M(X)) =0
Следствие2: Матожидание разности СВ =разности их :матожиданий M(X-Y) =M(X)-M(Y)
Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.
Это свойство также справедливо для произвольного числа случайных величин. Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.
:Матожидание произведение независимых СВ= произведению их матожиданий M (XY) = M(X)*M(Y)
Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.
Однако математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.
Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.
- Билет№1. Случайные события. Элементарные события. Пространство элементарных событий.
- Билет №2. Вероятность события. Формула классической вероятности.
- Билет№3. Несовместные события. Теорема сложения для несовместных событий.
- Билет№4.Независимые события. Теорема произведения для независимых событий.
- Билет№5. Условная вероятность. Теорема умножений вероятностей зависимых событий:
- Билет№6. Совместные события. Теорема сложения совместных событий:
- Билет №7. Вероятность появления хотя бы одного из n независимых в совокупности событий.
- Билет№8. Геометрическая вероятность события
- Билет №9. Статистическая вероятность.
- Билет №10. Принцип практичної вірогідності та практичної неможливості появи випадкових подій в окремому віпробуванні.
- Билет№11.Формула полной вероятности.
- Билет №12. Формула Байеса
- Билет №13. Случайная величина (дискретная и случайная). Примеры.
- Билет №14. Распределение дискретной случайной величины.
- Билет №15. Полигон (многоугольник) распределения.
- Билет №16. Числовые характеристики дискретных случайных величин.
- Билет №17. Незалежні та залежні дискретні випадкові величини.
- Билет №18. Математическое ожидание его свойства. Вероятностный смысл
- Билет №19. Дисперсия. Её свойства. Средне квадратичное отклонение.
- Билет №20. Распределение Бернулли. Его численные характеристики. Мода.
- №21. Твірна функція. (Производящая функция).
- №22. Розподіл Лапласа. Диференціальна теорема Лапласа.
- №23. Дифференціальна функція Лапласа та ії властивості.
- Билет№24. Интегральная функция Лапласа:
- Билет №25.Интегральная теорема Лапласа
- №26. Чисельні характеристики розподілу Лапласа. Численные характеристики распределения Лапласа:
- 27. Различные формы интегральной теоремы Лапласа.
- 28. Взаимонезависимые случайные величины, имеющие одинаковое распределение. Численные характеристики их среднего арифметического.
- 29. Распределение Пуассона. Область использования.
- 30. Численные характеристики распределения Пуассона. Мода.
- 31. Простейший (пуассоновский) поток событий.
- 32. Непрерывная случайная величина. Примеры.
- 33. Интегральная функция распределения. Ее свойства.
- №34. Кумулята. Ее свойства.
- 35. Дифференциальная функция распределения (плотность вероятности), ее свойства.
- 36. Численные характеристики непрерывной случайной величины.
- 37. Начальный и центральный моменты случайной величины.
- 38. Равномерное распределение, его использование. Численные характеристики.
- 39. Показательное распределение, его применение. Численные характеристики.
- 40. Нормальный закон распределения (закон Гаусса).
- 41. Влияние параметров нормального закона на форму кривой Гаусса.
- №42. Центрированная и нормированная нормальная случайная величина. Ее численные характеристики, дифференциальная и интегральная функции распределения.
- 43. Вероятность отклонения случайной величины, имеющей нормальное распределение, от матожидания. Правило 3 сигма.
- 44. Асимметрия, эксцесс.
- 45. Неравенство Чебышева.
- 46. Теорема Чебышева (закон больших чисел в форме Чебышева).
- №47. Теорема Бернулі (закон великих чисел у формі Бернулі).
- 48. Теорема Ляпунова (закон больших чисел в форме Ляпунова).
- 49. Случайный марковский процесс. Матрица перехода.
- 50. Уравнение Маркова.
- 51. Двумерная дискретная случайная величина, ее распределение.
- №52. Чисельні характеристики двомірної випадкової величини.
- №53. Умовний розподіл двовимірної випадкової величини та його чисельні характеристики.
- №54. Двовимірна неперервна випадкова величина. Інтегральна функція розподілу, її властивості.
- 55. Двумерные непрерывные случайные величины. Интегральная функция распределения, её свойства.
- №56. Звязок між диференціальною і інтегральною функціями розподілу.
- №57. Звязок між інтегральною і диференціальною функціями розподілу.
- 58. Вероятность попадания в полосу и прямоугольник.
- №59. Звязок між інтегральною функцією двовимірної неперервної випадкової величини та її компонентами.
- №60. Звязок між диференціальною функцією двовимірної неперервної випадкової величини та її компонентами.
- №61. Чисельні характеристики двовимірної неперервної випадкової величини.
- №62. Умовне матиматичне сподівання двовимірної неперервної випадкової величини.
- №63. Незалежні та залежні компоненти двовимірної дискретної випадкової випадкової величини.
- №64. Незалежні та залежні компоненти двовимірної неперервної випадкової випадкової величини.
- 63(105) Корреляционный момент. Его свойства
- 64(106). Коэффициент корреляции и его свойства
- 65. Коррелированные и некоррелированные случайные величины.
- №66. Двовимірна нормальна випадкова величина, її диференціальна функція розподілу.
- №67. Умовні диференціальні функції розподілу компонент двовимірної нормальної випадкової величини.
- 68. Условное матожидание и условное среднеквадратичное отклонение.
- №70. Генеральна сукупність. Її чисельні характеристики.
- 71. Выборка. Репрезентативность выборки.
- №72. Чисельні характеристики вибірки. Їх звязок з чисельними характеристиками генеральної сукупності.
- 73. Точечные оценки выборки. Её свойства: несмещенность , состоятельность, эффективность.
- 74. Оценка математического ожидания.
- №75. Оцінка дисперсії. Зміщенність цієї оцінки. Виправлена дисперсія.
- №76. Інтервальні оцінки. Довірчий інтервал. Точність та надійність оцінки.
- №77. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення відоме.
- №78. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення невідоме.
- №79. Доверительный интервал на неизвестное мат ожидание нормальной совокупности. Среднее квадратическое отклонение неизвестное. Объем выборки малый. Использование распределения Стьюдента.
- №80. Минимальный объем выборки, который обеспечивает заданную точность и надежность оценки мат. Ожидания.
- №81. Группировка эмпирических данных при их обработке. Выбор шага.
- №82. Гістограма відносних часток досліджуваної ознаки. Кумулята.
- №83. Знаходження чисельних характеристик за допомогою умовної варіанти.
- №84. Статистические гипотезы. Нулевая и конкурирующая гипотезы. Односторонняя и двусторонняя критические области. Ошибки первого и второго рода.
- №85. Критерій Пірсона. Знаходження критичних значень при перевірці гіпотези про погодження емпіричних та теоретичних частот. Баланс частот.
- №86. Корреляційний звязок. Лінійна парна регресія. Метод найменших квадратів.
- №87. Построение линейной парной регрессии. Центр корелляции. Экономическое содержание коэффициентов регрессии.
- №88. Спряжена лінія регресії. Її розташування по відношенню до прямої лінії регресії.
- №89. Вибірковий коефіцієнт корреляції. Його властивості.
- №90. Дисперсія помилок та дисперсія, зумовлена лінійною парною регресією. Коефіцієнт детермінації. Його властивості.
- №91 Дисперсійний аналіз вкладу дисперсії помилок та дисперсії, зумовленою регресією у повну дисперсію результативної ознаки.
- №92. Значимість лінійного корреляційного звязкуза критерієм Фішера-Снедекора.
- №94. Міжгрупова та внутрішньогрупова дисперсії.
- №95. Індекс детермінації та його властивості. Кореляційне відношення.
- №98. Критерий Стьюдента значимости коэффициента корелляции линейной парной регрессии.
- №99. Довірча полоса на пряму лінію регресії.
- №101. Лінійна множинна регрессія. Мнк. Система нормальних рівнянь.
- №102. Дисперсія помилок. Коефіцієнт детермінації.
- №104. Критерій Фішера значності множинної лінійної моделі в цілому.