9. Неявные функции
Неявные функции
функции, заданные соотношениями между независимыми переменными, не разрешенными относительно последних; эти соотношения являются одним из способов задания функции. Например, соотношение
x2 + y2 - 1 = 0
задаёт Н. ф.
y = у (х),
соотношения
x = ρcosφsinϑ, y = ρsinφsinϑ, z = ρcosϑ
задают Н. ф.:
ρ = ρ(x, у, z), φ = φ(x, y, z), ϑ = ϑ(х, у, z).
В простейших случаях соотношения, задающие Н. ф., могут быть разрешены в классе элементарных функций (См. Элементарные функции), т. е. удаётся найти элементарные функции, удовлетворяющие этим соотношениям. Так, в первом из приведённых выше примеров имеем:
а во втором:
Вообще же таких элементарных функций найти не удаётся. Н. ф. могут быть как однозначными, так и многозначными. Не всякое соотношение (или система соотношений) между переменными задаёт Н. ф. Так, если ограничиваться лишь действительными значениями переменных, то соотношение x2 + y2 + 1 = 0 не задаёт Н. ф., так как не удовлетворяется ни одной парой действительных значений х и у; соотношение же exy = 0 вообще не удовлетворяется ни одной парой действительных или комплексных значений х и у. Теорема существования Н. ф. в её простейшей формулировке утверждает, что если функция F (x, y) обращается в нуль при паре значений х = x0, у = y0 [F (x0, y0) ≠ 0] и дифференцируема в окрестности точки (x0, y0), причём F’x (х, у) и F’y (х, у) непрерывны в этой окрестности и F’y (x0, y0) ≠ 0, то в достаточно малой окрестности точки x0 существует одна и только одна однозначная непрерывная функция у = у (х), удовлетворяющая соотношению F (x, y) = 0 и обращающаяся в y0 при x = x0; при этом y'(x) = —F’x (x, y)/F’y (x, у).
Для приближённого вычисления значений Н. ф. вблизи точки x0, где её значение y0 уже известно, широко применяются степенные ряды. Так, если F (x, у) — аналитическая функция [т. е. может быть разложена в окрестности точки (x0, y0) в сходящийся двойной степенной ряд] и F’y (x0, y0) ≠ 0, то Н. ф., заданная соотношением F (x, y) = 0, может быть получена в виде степенного ряда
сходящегося в некоторой окрестности точки х = х0. Коэффициенты ck, k = 1, 2,..., могут быть найдены либо подстановкой этого ряда в соотношение F (x, у) = 0, либо последовательным дифференцированием этого соотношения по х. Например, если Н. ф. задана соотношением
y5 + xy - 1 = 0, x0 = 0, y0 = 1,
то и
откуда
c0 = 1, c1 = —1/5c0-3, c2 = —2c12c0-1 — 1/5c1c0-4 = —1/25 и т.д.
Если соотношение F (x, у) = 0 может быть представлено в виде у = а + хφ(у), где φ(y) — аналитическая функция, то Н. ф. у = у (х), заданная этим соотношением и принимающая значение а при х = 0, разлагается в ряд Лагранжа
сходящийся в некоторой окрестности точки х = 0. Например, из соотношения у = а + xsiny (так называемое Кеплера уравнение) можно получить:
Вычисление значений Н. ф. в общем случае может быть произведено по методу последовательных приближений.
Лит.: Смирнов В. И., Курс высшей математики, т. 1, 22 изд., М., 1967; т. 3, ч. 2, 8 изд., М., 1969; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Кудрявцев Л. Д., Математический анализ, т. 2, М., 1970.
- (Функция нескольких переменных)
- 1. Понятие функции двух и более переменных
- 1.1 Предел и непрерывность функции двух переменных
- 2. Примеры дифференциальных уравнений в частных производных 1-го порядка
- 3.Полный дифференциал
- 4. Производная сложной функции.
- 5.1Полный дифференциал
- 6. Касательная плоскость к поверхности
- 6.1Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
- 7.Производная по направлению и градиент функции нескольких переменных
- 8. Частные производные и дифференциалы высших порядков
- 9. Неявные функции
- 9.1Дифференцирование неявной функции
- 10. Экстремум функции
- 10.1Критические точки функции. Необходимое условие экстремума.
- 11. Достаточное условие экстремума
- 12. Наибольшее и наименьшее значения функции двух переменных в замкнутой области
- 13. Достаточные условия экстремума функции двух переменных
- 14. Лагранжа метод множителей
- (Интегральное исчисление)
- 1. Первообразная и неопределенный интеграл
- 1.1Таблица простейших интегралов
- 3. Метод подведения под знак дифференциала
- 4. Метод замены переменной
- 5. Интегрирование по частям
- 6. Теорема Безу
- 7. Теорема о разложении многочлена на линейные множители
- 8. Разложение дроби на простейшие.
- 9. Интегрирование рациональных дробей
- 10. Остроградского метод
- 11. Интегрирование тригонометрических функций
- 12 Интегрирование иррациональных выражений
- 14. Интегрирование дифференциального бинома
- 15 Интегрирование иррациональных функций
- 17. Формула Ньютона-Лейбница
- 18. Замена переменной в определенном интеграле
- 19. Несобственные интегралы.
- 20. Приближённое вычисление определённых интегралов
- 22. Длина дуги кривой.
- 23. Вычисление объема тела по площадям его параллельных сечений
- 24. Объем тела вращения.
- 25. Геометрическое и механическое приложения определенного интеграла
- (Числовые ряды)
- 2. Свойства сходящихся рядов.
- 12. Оценка знакочередующегося ряда.
- 13. Знакопеременные ряды
- 14. Абсолютная и условная сходимость
- 15. Знакопеременные ряды
- 19. Дифференцирование и интегрирование степенных рядов
- 20. Признак Вейерштрасса Рассмотрим ряд
- 21. Степенным рядом называется ряд вида
- 22. Интервал и радиус сходимости степенного ряда
- 24. Ряды Тейлора и Маклорена