9.1Дифференцирование неявной функции
Функция z = ƒ (х; у) называется неявной, если она задается уравнением
неразрешенным относительно z. Найдем частные производные неявной функции z, заданной уравнением (44.11). Для этого, подставив в уравнение вместо z функцию ƒ (х; у), получим тождество F(x;у;ƒ (х; у)) = 0. Частные производные по х и по у функции, тождественно равной нулю, также равны нулю:
откуда
Замечания.
а) Уравнение вида (44.11) не всегда определяет одну переменную как неявную функцию двух других. Так, уравнение х2+у2+z2-4=0 определяет функции определенные в круге х2+у2≤4 , определенную в полукруге х2+у2 ≤ 4 при у≥ 0 и т. д., а уравнение cos(x + 2у +3z)- 4 = 0 не определяет никакой функции.
Имеет место теорема существования неявной функции двух переменных: если функция F(x; у; z) и ее производные F'x(x; у; z), F'y(x; у; z), F'z(x;y;z) определены и непрерывны в некоторой окрестности точки M0(x0;y0;z0), причем F(x0;y0;z0)=0, а F'z(x0;y0;z0)≠0, то существует окрестность точки М0, в которой уравнение (44.11) определяет единственную функцию z=ƒ(х;у), непрерывную и дифференцируемую в окрестности точки (х0;у0) и такую, что ƒ(х0;у0)=z0.
б) Неявная функция у=ƒ(х) одной переменной задается уравнением F(x;у)=0. Можно показать, что в случае, если удовлетворены условия существования неявной функции одной переменной (имеется теорема, аналогичная вышеуказанной), то производная неявной функции находится по формуле
Пример 44.6. Найти частные производные функции z, заданной уравнением ez+z-х2у+1=0.
Решение: Здесь F(x;y;z)=ez+z-х2у+1, F'x=-2ху, F'y = -х2, F'z=ez+1. По формулам (44.12) имеем:
Пример 44.7. Найти если неявная функция у=ƒ(х) задана уравнением у3+2у=2х.
Решение: Здесь F(x;у) = у3+2у-2х, F'x=-2, F'y = 3у2+2. Следовательно,
Yandex.RTB R-A-252273-3
- (Функция нескольких переменных)
- 1. Понятие функции двух и более переменных
- 1.1 Предел и непрерывность функции двух переменных
- 2. Примеры дифференциальных уравнений в частных производных 1-го порядка
- 3.Полный дифференциал
- 4. Производная сложной функции.
- 5.1Полный дифференциал
- 6. Касательная плоскость к поверхности
- 6.1Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
- 7.Производная по направлению и градиент функции нескольких переменных
- 8. Частные производные и дифференциалы высших порядков
- 9. Неявные функции
- 9.1Дифференцирование неявной функции
- 10. Экстремум функции
- 10.1Критические точки функции. Необходимое условие экстремума.
- 11. Достаточное условие экстремума
- 12. Наибольшее и наименьшее значения функции двух переменных в замкнутой области
- 13. Достаточные условия экстремума функции двух переменных
- 14. Лагранжа метод множителей
- (Интегральное исчисление)
- 1. Первообразная и неопределенный интеграл
- 1.1Таблица простейших интегралов
- 3. Метод подведения под знак дифференциала
- 4. Метод замены переменной
- 5. Интегрирование по частям
- 6. Теорема Безу
- 7. Теорема о разложении многочлена на линейные множители
- 8. Разложение дроби на простейшие.
- 9. Интегрирование рациональных дробей
- 10. Остроградского метод
- 11. Интегрирование тригонометрических функций
- 12 Интегрирование иррациональных выражений
- 14. Интегрирование дифференциального бинома
- 15 Интегрирование иррациональных функций
- 17. Формула Ньютона-Лейбница
- 18. Замена переменной в определенном интеграле
- 19. Несобственные интегралы.
- 20. Приближённое вычисление определённых интегралов
- 22. Длина дуги кривой.
- 23. Вычисление объема тела по площадям его параллельных сечений
- 24. Объем тела вращения.
- 25. Геометрическое и механическое приложения определенного интеграла
- (Числовые ряды)
- 2. Свойства сходящихся рядов.
- 12. Оценка знакочередующегося ряда.
- 13. Знакопеременные ряды
- 14. Абсолютная и условная сходимость
- 15. Знакопеременные ряды
- 19. Дифференцирование и интегрирование степенных рядов
- 20. Признак Вейерштрасса Рассмотрим ряд
- 21. Степенным рядом называется ряд вида
- 22. Интервал и радиус сходимости степенного ряда
- 24. Ряды Тейлора и Маклорена