logo
Тут ответ

14. Лагранжа метод множителей

метод решения задач на Условный экстремум; Л. м. м. заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции — т. н. функции Лагранжа.

Для задачи об экстремуме функции f (х1, x2,..., xn) при условиях (уравнениях связи) φi(x1, x2, ..., xn) = 0, i = 1, 2,..., m, функция Лагранжа имеет вид

Множители y1, y2, ..., ym наз. множителями Лагранжа.

Если величины x1, x2, ..., xn, y1, y2, ..., ym суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

i = 1, …, n; i = 1, …,m,

то при достаточно общих предположениях x1, x2, ..., xn доставляют экстремум функции f. Функция Лагранжа L применяется также при исследовании задач вариационного исчисления и математического программирования. Впервые Л. м. м. был предложен в 1797 Ж. Лагранжем в связи с задачами дифференциального исчисления.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4